Based on ZnO microcavities with high quality factors, where the gain medium exhibits confinement of wave packets due to the intrinsically formed whispering gallery microcavity, strong coupling between excitons and cavity photons can be obtained at room temperature resulting in hybrid quasiparticles, e.g. exciton polaritons. In this work, polariton condensation is induced under the non-resonant excitation by linearly polarized femtosecond pulses with different polarization directions. The dynamical angle-resolved k-space spectra of the photoluminescence emission of polariton condensates are measured with sub-picosecond resolution by the self-developed femtosecond angle-resolved spectroscopic imaging technique. Our results show that the ultrafast dynamics of polariton condensation is sensitive to the polarization direction of the excitation pulses which can be explained qualitatively by the combined effect of selective excitation of distinct exciton modes in the sample and the effective coupling strength of the excitation pulses in the ZnO microcavity for various polarization directions. This work strengthened the understanding of the underlying physics of the condensation process for cavity exciton polaritons at room temperature.room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.