The widespread use of silver nanoparticles (AgNPs) raises concerns both about their accumulation in crops and human exposure via crop consumption. Plants take up AgNPs through their leaves and roots, but foliar uptake has been largely ignored. To better understand AgNPs-plant interactions, we compared the uptake, phytotoxicity and size distribution of AgNPs in soybean and rice following root versus foliar exposure. At similar AgNP application levels, foliar exposure led to 17-200 times more Ag bioaccumulation than root exposure. Root but not foliar exposure significantly reduced plant biomass, while root exposure increased the malondialdehyde and HO contents of leaves to a larger extent than did foliar exposure. Following either root or foliar exposure, Ag-containing NPs larger (36.0-48.9 nm) than the originally dosed NPs (17-18 nm) were detected within leaves. These particles were detected using a newly developed macerozyme R-10 tissue extraction method followed by single-particle inductively coupled plasma mass spectrometry. In response to foliar exposure, these NPs were stored in the cell wall and plamalemma of leaves. NPs were also detected in planta following Ag ion exposure, indicating their in vivo formation. Leaf-to-leaf and root-to-leaf translocation of NPs in planta was observed but the former did not alter the size distribution of the NPs. Our observations point to the possibility that fruits, seeds and other edible parts may become contaminated by translocation processes in plants exposed to AgNPs. These results are an important contribution to improve the risk assessment of NPs under environmental exposure scenarios.
It is well-known that selenium (Se) shows protective effects against mercury (Hg) bioaccumulation and toxicity, but the underlying effects of Se chemical species, concentration, and administration method are poorly known. In this study, we conducted laboratory studies on a marine fish Terapon jurbua to explain why Hg accumulation is reduced in the presence of Se observed in field studies. When Se and Hg were administrated concurrently in the fish diets, different Se species including selenite, selenate, seleno-dl-cystine (SeCys), and seleno-dl-methionine (SeMet) affected Hg bioaccumulation differently. At high concentration in fish diet (20 μg g(-1) normally), selenate and SeCys significantly reduced the dietary Hg(II) assimilation efficiency (AE) from 38% to 26%. After the fish were pre-exposed to dietary selenite or SeMet (7 μg g(-1) normally) for 22 days with significantly elevated Se body concentrations, the Hg(II) AEs were pronouncedly reduced (from 41% to 15-26%), whereas the dissolved uptake rate constant and elimination rate constant were less affected. In contrast to Hg(II), all the MeHg biokinetic parameters remained relatively constant whether Se was administrated simultaneously with the fish diet or when the fish were pre-exposed to Se with elevated body concentrations. Basic biokinetic measurements thus revealed that Se had direct interaction with Hg(II) during dietary assimilation rather than with MeHg and that different Se species had variable effects on Hg assimilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.