Mutations in the PTEN/MMAC1 gene have been identi®ed in several types of human cancers and cancer cell lines, including brain, endometrial, prostate, breast, thyroid, and melanoma. In this study, we screened a total of 96 hepatocellular carcinoma (HCC) samples from Taiwan, where HCC is the leading cancer in males and third leading cancer in females, for mutations in the PTEN/MMAC1 gene. Complete sequence analysis of these samples demonstrated a missense mutation in exon 5 (K144I) and exon 7 (V255A) from HCC samples B6-21 and B6-2, respectively. A putative splice site mutation was also detected in intron 3 from sample B6-2. Both B6-21 and B6-2 were previously shown to contain missense mutations in the coding sequences of the p53 gene. Functional studies with the two missense mutations demonstrated that while mutation V255A in exon 7 resulted in a loss of phosphatase activity, mutation K144I in exon 5 retained its phosphatase activity. Additionally, we identi®ed a silent mutation (P96P) in exon 5 of the PTEN/MMAC1 gene from HCC sample B6-22. These data provide the ®rst evidence that the PTEN/MMAC1 gene is mutated in a subset of HCC samples.
Ultraviolet light exposure is the major risk factor for the development of squamous cell carcinoma in Caucasians. Mutations in the tumor suppressor gene p53 have been identified in both squamous cell carcinomas and basal cell carcinomas. The human homolog of the Drosophila patched gene, has been shown to be mutated in sporadic basal cell carcinomas; however, mutations in the patched gene have not been found in squamous cell carcinoma. In this study, we screened a total of 20 squamous cell carcinoma samples for mutations in the patched gene. Using polymerase chain reaction-single strand conformation polymorphism as an initial screening method, we identified one non-sense mutation, two mis-sense mutations and three silent mutations in five squamous cell carcinoma samples. In one squamous cell carcinoma sample, we identified a tandem GG-->AA transitional change at nucleotide 3152 in exon 18 of the patched gene that resulted in a premature stop codon at codon 1051. The three squamous cell carcinoma samples containing non-sense and mis-sense mutations were isolated from individuals with histories of multiple basal cell carcinoma. Sequence analysis of the p53 gene in these five squamous cell carcinoma samples identified one CC-->TT and three C-->T ultraviolet-specific nucleotide changes. Our study provides evidence that the patched gene is mutated in squamous cell carcinoma from individuals with a history of multiple basal cell carcinoma. The identification of ultraviolet-specific nucleotide changes in both tumor suppressor genes supports the notion that ultraviolet exposure plays an important part in the development of squamous cell carcinoma.
A cell-based screening assay was performed to identify compounds that inhibited the postintegration stage of the human immunodeficiency virus (HIV) life cycle. This assay utilized a cell line that contains the HIV gag and pol genes expressed in a Rev-dependent fashion. The cell line produces about 10 to 15 ng of p24 per milliliter of medium over a 24-h period in the form of viruslike particles. Any compound that inhibits a postintegration step in the HIV life cycle scores in this assay by decreasing particle production. Forty thousand compounds were screened, and 192 compounds were selected from the original screen because they showed more than 50% inhibition at a 10 M concentration. The cumulative evidence presented in this study strongly suggests that 2 of the 192 compounds work as inhibitors of HIV Rev function. This was determined by a variety of cell-based assays, although the compounds do not interfere with Rev-RRE (Rev response element) binding in vitro. Both compounds inhibit replication of the lab isolate NL4-3 as well as an HIV primary isolate from Brazil (93BR021) and thus are promising leads as therapeutic candidates that target HIV replication through inhibition of Rev function.Most of the current drugs in use for the treatment of AIDS work by targeting the enzymatic activities of the human immunodeficiency virus (HIV) reverse transcriptase or protease, although entry (7) and integrase (13) inhibitors are starting to be used, and presently there is also promising development of other novel targets (51, 59). However, because of the emergence of drug-resistant virus that commonly occurs as the result of treatment, there remains a great need to continue the search for alternative therapies that target other essential viral activities.The Rev protein is absolutely essential for HIV replication (for a review see reference 49). Proviral clones lacking a functional rev gene have no replicative ability, even in established tissue culture cell lines or peripheral blood mononuclear cells (PBMCs). In the absence of Rev, genomic RNA and several other HIV mRNAs cannot exit the nucleus (22,30,42). Thus, viral structural proteins are not made and the infectious cycle cannot continue. It is thus clear that modalities inhibiting the function of Rev could form the basis for therapy against HIV infection and AIDS.Although the Rev/RRE (Rev response element) export pathway is still not fully understood, several important steps have been identified (see reference 49). The pathway starts with the import of Rev into the nucleus (34, 58). Rev then binds specifically to RNA containing the RRE (17,28,30,42,53) and multimerizes on the RRE in a process believed to involve protein-protein as well as protein-RNA interactions (12,14,16,32,36,43,67). The Rev-RRE complex is then recognized by Crm1 (exportin 1; official gene symbol, XPO1) and RAN-GTP (1), which initiates the export process and eventually targets the complex to the nuclear pore, where it interacts with nucleoporins (1,4,25,70). This results in translocation of the com...
Burkholderia pyrrocinia JK-SH007 is a plant growth-promoting bacteria (PGPB), that can promote the growth of poplar and other trees, and, production of the plant hormone indole-3-acetic acid (IAA) is one of the reasons for this effect. Therefore, the aims of this study were to evaluate the effect of the external environment on the synthesis of IAA by B. pyrrocinia JK-SH007 and to perform a functional analysis of its IAA synthesis pathway. In this study, IAA and its synthetic intermediates indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), tryptamine (TAM), and indole-3-acetonitrile (IAN) were detected in B. pyrrocinia JK-SH007 fermentation broth by high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS), and these indolic compounds were also found in the cell-free extraction of B. pyrrocinia JK-SH007, but the genomic analysis of B. pyrrocinia JK-SH007 indicated that IAA biosynthesis was mainly through the IAM and TAM pathways. The effects of L-tryptophan (L-Trp), temperature and pH on the synthesis of IAA were investigated, and the results showed that L-Trp exerted a significant effect on IAA synthesis and that 37°C and pH 7 were the optimal conditions IAA production by B. pyrrocinia JK-SH007. In addition, the protein expression of tryptophan 2-monooxygenase and indoleacetamide hydrolase, which are the key enzymes of the indole acetamide-mediated IAA synthesis pathway, was analyzed, and their activity was verified by substrate feeding experiments. The results revealed the existence of an IAA synthesis pathway mediated by IAM and indicated that this pathway plays a role in B. pyrrocinia JK-SH007. This study lays the foundation for further exploration of the specific pathway and mechanism of IAA synthesis in B. pyrrocinia JK-SH007.
The efficient industrial conversion of plant-derived cellulose to simple sugars and other value-added chemicals requires various highly stable and reactive enzymes. Industrial processes especially synchronous saccharification and fermentation (SSF)based production of cellulosic bio-ethanol require enzymes that are active at lower temperatures. In this study, we have identified, characterized, and expressed the cold-adaptive endo-1,4-β-glucanase (BpEG) isolated from the Burkholderia pyrrocinia JK-SH007. The analysis of the predicted amino acid sequence indicated that BpEG belongs to GH family 8. The BpEG without the signal peptide was cloned into the expression vector pET32a and significantly expressed in Escherichia coli BL21 (DE3) competent cells. The SDS-PAGE and Western blot analysis of BpEG revealed that the recombinant BpEG was approximately 60 kDa. Purified recombinant BpEG exhibited hydrolytic activity against carboxymethyl cellulose (CMC) and phosphoric acid swollen cellulose (PASC), but not crystalline cellulose and xylan substrates. High performance, anion exchange, chromatography-pulsed amperometric detector (HPAEC-PAD) analysis of the enzymatic products obtained from depolymerization of 1,4-β-linked biopolymers of different lengths revealed an interesting cutting mechanism employed by endoglucanases. The recombinant BpEG exhibited 6.0 of optimum pH and 35 • C of optimum temperature, when cultured with CMC substrate. The BpEG enzyme exhibited stable activity between pH 5.0 and 9.0 at 35 • C. Interestingly, BpEG retained about 42% of its enzymatic activity at 10 • C compared to its optimal temperature. This new cold-adaptive cellulase could potentially achieve synchronous saccharification and fermentation (SSF) making BpEG a promising candidate in the fields of biofuel, biorefining, food and pharmaceutical industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.