The elastic properties of rock are major factors affecting hydraulic fracturing. Static elastic properties can be estimated using geomechanical laboratory tests, whereas dynamic properties can be estimated from elastic-wave velocity and rock density. We prepared two synthetic shales containing different clay minerals and one natural shale and focused on the elastic properties for the full tensor of elasticity and their anisotropy. The static and dynamic properties of these dry samples were obtained based on triaxial tests during loading and unloading. The results suggest that the synthetic and natural shale indicate high similarity in the static and dynamic properties. The dynamic Young’s modulus and Poisson’s ratio increase with increasing axial stress during loading and unloading. For the static properties, the static Poisson’s ratio increases with axial stress during loading and unloading. However, differences exist between the static and dynamic Young’s moduli during loading, with the static Young’s modulus decreases with the increasing axial stress at a high stress level. In addition, the static Young’s modulus is consistently lower than the dynamic Young’s modulus during loading and unloading, but the static Poisson’s ratio is larger or smaller than the dynamic Poisson’s ratio. During loading and unloading, there could be approximately a 30% difference when estimating static elastic properties from the static-dynamic relations, depending on which static moduli are used. Furthermore, the static and dynamic properties of the samples are strongly anisotropic, and the anisotropy of elastic properties is sensitive to the axial stress and the clay minerals.
Three-dimensional (3-D) numerical simulations have been carried out taking into account the magnetohydrodynamics (MHD) effect of the railgun plasma armature. The 3-D space-time conservation element and solution element (CE/SE) method is derived for solving the coupled Navier-Stokes equations and Maxwell equations. The results show that a steeper gradient of the magnetic field and pressure that appears along the direction of the rail can be observed. The temperature distribution is affected by the boundary conditions for the radiative heat flux, with the maximum temperature appearing in the center near the base of the projectile. Circulation patterns of velocity that are evident in both the rail-to-rail plane and the insulator-to-insulator plane result from the convection and unbalanced force between the Lorentz force and pressure gradient. The periodical variation of the temperature and acceleration is obvious until a new steady state is achieved. This model can efficiently evaluate the dynamics of the plasma motion, and provide a basis on understanding the much more complex physical phenomena.
In this paper we investigate the influence of different rail coatings on melt-wave erosion (MWE) in block armatures. A two-dimensional numerical model is developed and the finite difference method is used to simulate the transient evolution of MWE. The results of numerical calculations show a local concentration of current and joule heating at the interface, and MWE occurs at the trailing corner of the block armature. Five different pure metals are used as the rail coatings to improve the launching performance of the railgun. Important electrical parameters of coatings are analyzed through comparing the axial erosion distance and the vertical gap thickness. It is observed that the coating materials with a higher electrical conductivity than that of rail material are helpful to delay the spread of MWE. The results are inspiring and contribute to apply the rail coatings to solid-armature railguns.
Clay minerals are the most abundant materials in shale. Their presence significantly influences the elastic behavior of reservoir rocks as a function of mineral type, volume, and distribution, and their orientation controls the shale’s intrinsic anisotropic behaviors. Thus, knowing the elastic properties of shale with different types of clay minerals is imperative for fully understanding the seismic properties of the reservoir. However, it is extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay), due to the influences of multiple factors, including water, total organic carbon content, complex mineral composition, and so on. Thus, we use quartz, clay (kaolinite, illite, and smectite), carbonate, and kerogen extract as the primary materials to construct synthetic shale with different types of clay. Ultrasonic experiments were conducted to study the anisotropy of velocity and mechanical properties (Young’s modulus and Poisson’s ratio) in dry synthetic shale samples as a function of applied axial stress. The results show that the velocity of samples increases with applied pressure and the rate of velocity increase is higher at low pressures. Similarly, the dynamic Young’s modulus and Poisson’s ratio increase with applied pressure; [Formula: see text] is always larger than [Formula: see text], but [Formula: see text] may be larger or smaller than [Formula: see text]. Furthermore, velocity anisotropy and mechanical anisotropy decrease with the increase of stress and are sensitive to stress and lithology. The closure of large aspect-ratio pores (and/or microcracks) seems to be a dominant mechanism controlling the change of anisotropy. Finally, the changes in mechanical anisotropy under applied stress are larger compared with the changes in velocity anisotropy, indicating that mechanical properties are more sensitive to the changes in rock property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.