Abstract:With the rapid development of assisted reproductive technology, various reproductive disorders have been effectively addressed. Acupuncture-like therapies, including electroacupuncture (EA) and transcutaneous electrical acupoint stimulation (TEAS), become more popular world-wide. Increasing evidence has demonstrated that EA and TEAS are effective in treating gynecological disorders, especially infertility. This present paper describes how to select acupoints for the treatment of infertility from the view of theories of traditional Chinese medicine and how to determine critical parameters of electric pulses of EA/TEAS based on results from animal and clinical studies. It summarizes the principles of clinical application of EA/TEAS in treating various kinds of reproductive disorders, such as polycystic ovary syndrome (PCOS), pain induced by oocyte retrieval, diminished ovarian reserve, embryo transfer, and oligospermia/ asthenospermia. The possible underlying mechanisms mediating the therapeutic effects of EA/TEAS in reproductive medicine are also examined.
We identified loss-of-function PV of ZP2 causing a structurally abnormal and dysfunctional ZP, resulting in fertilization failure and female infertility.
Globozoospermia, characterized by round-headed spermatozoa without acrosomes, is a rare and severe teratozoospermia causing primary male infertility. Homozygous DPY19L2 deletions have been identified as the main cause of globozoospermia, blocking sperm head elongation and acrosome formation. Several previous studies showed a very different prevalence of DPY19L2 gene deletions among globozoospermic patients in cohorts with different sample sizes and in different ethnic background. And all the patients previously analyzed were mainly of European, North African and Middle Eastern origins. So far, only 11 different point mutations of the DPY19L2 gene have been reported. To investigate the prevalence of DPY19L2 gene mutations in Chinese patients with globozoospermia and whether we can identify new sequence variants in this study, we recruited a total of 16 globozoospermic patients. Excluding one of two brothers, molecular analysis for deletions and mutations in the DPY19L2 gene was performed on 15 genetically independent individuals. Four of the 15 genetically independent patients with globozoospermia were homozygous for the DPY19L2 deletion, 5 were homozygous for a point mutation including a nucleotide deletion c.1532delA (two patients), a multi-mutation consisting of a nucleotide deletion c.1679delT and a two-nucleotide deletion c.1681_1682delAC (c.[1679delT; 1681_1682delAC]) (one patient), a recurrent missense mutation R290H (one patient) and a missense mutation L330P (one patient). One additional patient had a heterozygous deletion in one allele but with no mutation identified in another allele. Overall, 60% of the patients (9/15) have a sequence variant of DPY19L2 in both alleles. This study confirms that the DPY19L2 mutations are the major cause of globozoospermia. Three novel point mutations and a recurrent missense mutation were found in this study, further broadening the spectrum of DPY19L2 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.