The solar cycle, seasonal, and diurnal variations of the subauroral ion drifts (SAIDs) are investigated for the first time to use such a large database of 18,226 SAID events observed by the DMSP satellites during 1987-2012. Statistical results show that SAIDs occur mostly at 60.1°invariant latitude and 2230 magnetic local time with a typical half width of 0.57°, move equatorward during high solar activities with large widths, and have two occurrence peaks in spring and fall equinoxes and two valleys in summer and winter solstices. The seasonal variation of SAID latitude has two valleys in spring and fall, and SAID width has a valley distribution with a minimum in summer. SAIDs exhibit a clear day-to-night difference in latitude. The diurnal variation of SAID width has a morning valley and an afternoon peak. The generation mechanism of SAID associated with the electron precipitation and the downward field-aligned current is also supported in this study.
We report on the fabrication of hollow microfluidic channels with a circular cross-sectional shape embedded in fused silica by spatiotemporally focusing the femtosecond laser beam. We demonstrate both theoretically and experimentally that the spatiotemporal focusing of femtosecond laser beam allows for the creation of a three-dimensionally symmetric spherical intensity distribution at the focal spot.
Recent advances in table-top, ultrahigh intensity lasers have led to significant renewed interest in the classic problem of Thomson scattering. An important current application of these scattering processes is the generation of ultrashort-pulse-duration x rays. In this tutorial, the classical theory of nonlinear Thomson scattering of an electron in an intense laser field is presented. It is found that the orbit, and therefore its nonlinear scattering spectra, depends on the amplitude and on the phase at which the electron sees the laser electric field. Novel, simple asymptotic expansions are obtained for the spectrum of radiation that is backscattered from a laser by a counter-propagating ͑or co-propagating͒ electron. The solutions are presented in such a way that they explicitly show-at least in the single particle regime-the relative merit of using an intense laser and of an energetic electron beam in x-ray production. The close analogy with free electron laser/synchrotron source is indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.