A global strategy to prepare a versatile and robust reactive platform for immobilizing molecules on carbon substrates with controlled morphology and high selectivity is presented. The procedure is based on the electroreduction of a selected triisopropylsilyl (TIPS)-protected ethynyl aryldiazonium salt. It avoids the formation of multilayers and efficiently protects the functional group during the electrografting step. After TIPS deprotection, a dense reactive ethynyl aryl monolayer is obtained which presents a very low barrier to charge transfer between molecules in solution and the surface. As a test functionalization, azidomethylferrocene was coupled by "click" chemistry with the modified surface. Analysis of the redox activity highlights a surface concentration close to the maximum possible attachment considering the steric hindrance of a ferrocenyl group.
The electroreduction of functionalized aryldiazonium salts combined with a protection-deprotection method was evaluated for the fabrication of organized mixed layers covalently bound onto carbon substrates. The first modification consists of the grafting of a protected 4-((triisopropylsilyl)ethynyl)benzene layer onto the carbon surface on which the introduction of a second functional group is possible without altering the first grafted functional group. After deprotection, we obtained an ultrathin robust layer presenting high densities of both active ethynylbenzene groups (available for "click" chemistry) and the second functional group. The strategy was successfully demonstrated using azidomethylferrocene to react with ethynyl moieties in the binary film by "click" chemistry, and NO(2)-phenyl as the second functional group. Two possible modification pathways with different orderings of the various steps were considered to show the influence and importance of the protection-deprotection process on the final surface obtained. Using mild conditions for the grafting of the second layer maintains a concentration of active ethynyl groups similar to that obtained for a one-component monolayer while achieving a high surface concentration of the second modifier. Considering the wide range of functional aryldiazonium salts that could be electrodeposited onto carbon surfaces and the versatility and specificity of the "click" chemistry, this approach appears very promising for the preparation of mixed layers in well-controlled conditions without altering the reactivity of either functional group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.