Dedicated short-range communication (DSRC) technology can provide drivers with information about other vehicles that are beyond the normal range of vision and enables the development of driving support systems such as the rear-end collision warning system (ReCWS).However, technology constraints such as communication delays and GPS error affect the accuracy of a DSRC-based ReCWS. This paper proposes a ReCWS design that explicitly represents functional specifications of DSRC technology, including transmission delay specifications that describe the information transmission process and an error-component safety distance specification used to represent the effect of GPS error and the information propagation delay. We propose three collision warning strategies each with different deceleration requirements. The system is assembled with off-the-shelf DSRC and mobile technology that can be readily installed into test vehicles. To test the effectiveness of the proposed ReCWS, we ran a variety of controlled scenarios on a test track. The results show a high degree of warning accuracy. These field test results also provide calibrated system parameter values for future studies and designs of DSRC-based ReCWSs.
Abnormal driving behaviours, such as rapid acceleration, emergency braking, and rapid lane changing, bring great uncertainty to traffic, and can easily lead to traffic accidents. The accurate identification of abnormal driving behaviour helps to judge the driver's driving style, inform surrounding vehicles, and ensure the road traffic safety. Most of the existing studies use clustering and shallow learning, it is difficult to accurately identify the types of abnormal driving behaviours. Aimed at addressing the difficulty of identifying driving behaviour, this study proposed a recognition model based on a long short-term memory network and convolutional neural network (LSTM-CNN). The extreme acceleration and deceleration points are detected through the statistical analysis of real vehicle driving data, and the driving behaviour recognition data set is established. By using the data set to train the model, the LSTM-CNN can achieve a better result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.