The binding of cell integrins to proteins adsorbed on the material surface is a highly dynamic process critical for guiding cellular responses. However, temporal dynamic regulation of adsorbed proteins to meet the spatial conformation requirement of integrins for a certain cellular response remains a great challenge. Here, an active CoFeO/poly(vinylidene fluoride-trifluoroethylene) nanocomposite film, which was demonstrated to be an obvious surface potential variation (Δ V ≈ 93 mV) in response to the applied magnetic field intensity (0-3000 Oe), was designed to harness the dynamic binding of integrin-adsorbed proteins by in situ controlling of the conformation of adsorbed proteins. Experimental investigation and molecular dynamics simulation confirmed the surface potential-induced conformational change in the adsorbed proteins. Cells cultured on nanocomposite films indicated that cellular responses in different time periods (adhesion, proliferation, and differentiation) required distinct magnetic field intensity, and synthetically programming the preferred magnetic field intensity of each time period could further enhance the osteogenic differentiation through the FAK/ERK signaling pathway. This work therefore provides a distinct concept that dynamically controllable modulation of the material surface property fitting the binding requirement of different cell time periods would be more conducive to achieving the desired osteogenic differentiation.
We describe a Salmonella biosensor that was obtained by electrochemical immobilization of a nanocomposite consisting of reduced graphene oxide (rGO) and carboxymodified multi-walled carbon nanotubes (MWCNTs) directly on the surface of a glassy carbon electrode (GCE). An aminomodified aptamer specific for Salmonella was covalently bound to the rGO-MWCNT composite via amide bonds. The morphology of the rGO-MWCNT nanocomposite was characterized by transmission electron microscopy and scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used to monitor all steps during assembly. When exposed to samples containing Salmonella, the anti-Salmonella aptamer on the electrode captures its target. Hence, electron transfer is blocked, and this results in a large increase in impedance. Salmonella can be quantified by this aptasensor, typically operated at a working voltage of 0.2 V (vs. Ag/AgCl), in the range from 75 to 7.5×10 5 cfu⋅mL −1 and detection limit of 25 cfu⋅mL −1 (at an S/N of 3). The method is perceived to have a wide scope in that other bacteria may be detected by analogy to this approach and with very low limits of detection by applying respective analyte-specific aptamers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.