As the backbone of many real-world complex systems, networks interact with others in nontrivial ways from time to time. It is a challenging problem to detect subgraphs that have dependencies on each other across multiple networks. Instead of devising a method for a specific scenario, we propose a generic framework to discover subgraphs in multiple interdependent networks, which generalizes the classical subgraph detection problem in a single network and can be applied to more practical applications. Specifically, we propose the Graph Block-structured Gradient Hard Thresholding Pursuit (GB-GHTP) framework to optimize interdependent networks with block-structured constraints, which enjoys 1) a theoretical guarantee and 2) a nearly linear time complexity on the network size. It is demonstrated how our framework can be applied to three practical applications: 1) evolving anomalous subgraph detection in dynamic networks, 2) anomalous subgraph detection in networks of networks, and 3) connected dense subgraph detection in dual networks. We evaluate our framework on large-scale datasets with comprehensive experiments, which validate our framework's effectiveness and efficiency.INDEX TERMS subgraph detection, sparse optimization, interdependent networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.