BackgroundThe characteristics and therapeutic potential of subtypes of mesenchymal stem cells (MSCs) are largely unknown. In this study, CD146+ and CD146– MSCs were separated from human umbilical cords, and their effects on regulatory T cells (Tregs), Th17 cells, chondrogenesis, and osteogenesis were investigated.MethodsFlow cytometry was used to quantify IL-6 and TGF-β1 expressed on CD146+ and CD146– MSCs. The therapeutic potential of both subpopulations was determined by measuring the clinical score and joint histology after intra-articular (IA) transfer of the cells into mice with collagen-induced arthritis (CIA).ResultsCompared with CD146– MSCs, CD146+ MSCs expressed less IL-6 and had a significantly greater effect on chondrogenesis. After T lymphocyte activation, Th17 cells were activated when exposed to CD146– cells but not when exposed to CD146+ cells both in vitro and in vivo. IA injection of CD146+ MSCs attenuated the progression of CIA. Immunohistochemistry showed that only HLA-A+ CD146+ cells were detected in the cartilage of CIA mice. These cells may help preserve proteoglycan expression.ConclusionsThis study suggests that CD146+ cells have greater potency than CD146– cells for cartilage protection and can suppress Th17 cell activation. These data suggest a potential therapeutic application for CD146+ cells in treating inflammatory arthritis.
AREG and TACE expression were up-regulated by IL-1β and their activations on FLS-RA lead to the matrix degradation by inducing MMP-1 and cadherin-11 production. TACE activity is necessary for IL-1β-induced AREG release. Our results demonstrate that IL-1β-induced AREG release may be involved in the pathogenesis of RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.