Nanoshell arrays have recently been found to possess ideal properties as a substrate for combining surface enhanced raman scattering (SERS) and surface enhanced infrared absorption (SEIRA) spectroscopies, with large field enhancements at the same spatial locations on the structure. For small interparticle distances, the multipolar plasmon resonances of individual nanoshells hybridize and form red-shifted bands, a relatively narrow band in the near-infrared (NIR) originating from quadrupolar nanoshell resonances enhancing SERS, and a very broadband in the mid-infrared (MIR) arising from dipolar resonances enhancing SEIRA. The large field enhancements in the MIR and at longer wavelengths are due to the lightning-rod effect and are well described with an electrostatic model.
We have designed and fabricated a new hybrid nanoparticle that combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells. This dielectric core-metallic shell prolate spheroid nanoparticle bears a remarkable resemblance to a grain of rice, inspiring the name "nanorice". This geometry possesses far greater structural tunability than either a nanorod or a nanoshell, along with much larger local field intensity enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than any dielectric-metal nanostructures reported previously. Invoking the plasmon hybridization picture allows us to understand the plasmon resonances of this geometry, as arising from a hybridization of the primitive plasmons of a solid spheroid and an ellipsoidal cavity inside a continuous metal.
We show that the plasmon resonances of a metallic nanoparticle interacting with the surface plasmons of a metallic film is an electromagnetic analogue of the spinless Anderson-Fano model. This is the same model used to describe the interaction of a localized electronic state with a continuous band of electronic states. The three characteristic regimes of this model are realized here, where the energy of the nanoparticle plasmon resonance lies above, within, or below the energy band of surface plasmon states. These three interaction regimes are controlled by film thickness. The latter regime is experimentally observed and identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.