Uncontrolled hemorrhage from trauma or surgery can lead to death. In this study, chitosan/kaolin (CSK) and chitosan/montmorillonite (CSMMT) composites were prepared from chitosan (CS), kaolin (K), and montmorillonite (MMT) as raw materials to control bleeding. The physiochemical properties and surface morphology of CSK and CSMMT composites were analyzed by Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta potentials, and X-ray fluorescence (XRF). The hemostatic mechanism was measured in vitro by activated partial thromboplastin time (APTT), prothrombin time (PT), in vitro clotting time, erythrocyte aggregation, and thromboelastogram (TEG). The hemostasis ability was further verified by using tail amputation and arteriovenous injury models in rats. The biocompatibility of CSK and CSMMT was evaluated by in vitro hemolysis, cytotoxicity assays, as well as acute toxicity test and skin irritation tests. The results show that CSK and CSMMT are promising composite materials with excellent biocompatibility and hemostatic properties that can effectively control bleeding.
Radiation enteritis—clinically manifested as diarrhea, intestinal bleeding, and so on—is frequently caused when the body is exposed to radiation or radiotherapy because the intestine is radiation-sensitive as an abdominal organ. Therefore, strategies to modulate intestinal hemostasis had inspired an important research trend in the process of preventing and treating radiation enteritis. Based on the structural characteristics of montmorillonite (MMT) and the hemostatic drug tranexamic acid (TXA) which was used clinically to treat enteritis, the tranexamic acid-montmorillonite composite material (TXA-MMT) was prepared through intercalation composite technology. According to the analysis of FTIR, XRD, TG-DTG, SEM, and XRF, the prepared TXA-MMT was verified that tranexamic acid could intercalate into layers of montmorillonite. To evaluate the biocompatibility, two experiments were conducted by in vitro hemolysis and in vitro cytotoxicity experiments and results showed that TXA-MMT exhibited good visible biocompatibility. Activated partial thromboplastin time, prothrombin time, and in vitro clotting time were adopted to determine the hemostatic effect of TXA-MMT. Compared with other groups, TXA-MMT revealed a significant decrease in clotting time variations, APTT, and PT. In addition, to investigate the preventive effect of TXA-MMT by the intervention of radiation enteritis mice, inflammatory factors IL-1β, IL-6, and TNF-α and the content of endotoxin in the serum of mice were detected. It demonstrated that TXA-MMT reduced the levels of these factors. Besides, the expression and the pathological changes of the small intestine tissue of mice were relieved. Our findings suggests that TXA-MMT as a promising intercalation composite has a great potential for application in the field of intestinal hemostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.