A fundamental task in robotics is to plan collision-free motions among a set of obstacles. Recently, learning-based motion-planning methods have shown significant advantages in solving different planning problems in high-dimensional spaces and complex environments. This article serves as a survey of various different learning-based methods that have been applied to robot motion-planning problems, including supervised, unsupervised learning, and reinforcement learning. These learning-based methods either rely on a human-crafted reward function for specific tasks or learn from successful planning experiences. The classical definition and learning-related definition of motion-planning problem are provided in this article. Different learning-based motion-planning algorithms are introduced, and the combination of classical motion-planning and learning techniques is discussed in detail.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.