We have investigated the effects of piezoelectric potential in a ZnO nanowire on the transport characteristics of the nanowire based field effect transistor through numerical calculations and experimental observations. Under different straining conditions including stretching, compressing, twisting, and their combination, a piezoelectric potential is created throughout the nanowire to modulatealternate the transport property of the metal-ZnO nanowire contacts, resulting in a switch between symmetric and asymmetric contacts at the two ends, or even turning an Ohmic contact type into a diode. The commonly observed natural rectifying behavior of the as-fabricated ZnO nanowire can be attributed to the strain that was unpurposely created in the nanowire during device fabrication and material handling. This work provides further evidence on piezopotential governed electronic transport and devices, e.g., piezotronics.
We report a novel method to fabricate high zoom-ratio optofluidic compound microlenses using poly(dimethylsiloxane) with multi-layer architecture. The layered structure of deformable lenses, biconvex and plano-concave, are self-aligned as a group. The refractive index contrast of each lens, which is controlled by filling the chambers with a specific medium, is the key factor for determining the device's numerical aperture. The chip has multiple independent pneumatic valves that can be digitally switched on and off, pushing the liquid into the lens chambers with great accuracy and consistency. This quickly and precisely tunes the focal length of the microlens device from centimetres to sub-millimetre. The system has great potential for applications in portable microscopic imaging, bio-sensing, and laser beam configuration.
A dual-band ten-element MIMO array based on dual-mode inverted-F antennas (IFAs) for 5G terminal applications is presented in this paper. The proposed dual-mode IFA is composed of two radiators, which are etched on the outer and inner surfaces of the side-edge frame. The outer part of the antenna generates the low-order mode at 3.5 GHz, while the inner part radiates another one-quarterwavelength mode at 4.9 GHz. In this way, the IFA can achieve dual-band operation within a compact size of 10.6 × 5.3 × 0.8 mm 3 . Based on the proposed antenna, a dual-band ten-element multiple-input and multipleoutput (MIMO) array is developed for 5G terminal applications. By combining neutralization line structures with decoupling branches, the isolations between the elements are improved. To validate the design concept, a prototype of the ten-element MIMO array is designed, fabricated, and measured. The experimental results show that the proposed antenna can cover the 3.3-3.6 GHz and 4.8-5.0 GHz bands with good isolation and high efficiency. Furthermore, the envelope correlation coefficient (ECC), and channel capacity are also calculated to verify the MIMO performances for 5G sub-6GHz applications.INDEX TERMS Dual-band antenna, dual-mode IFA, fifth generation (5G) communication, MIMO antenna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.