Robot grasping is an important direction in intelligent robots. However, how to help robots grasp specific objects in multi-object scenes is still a challenging problem. In recent years, due to the powerful feature extraction capabilities of convolutional neural networks (CNN), various algorithms based on convolutional neural networks have been proposed to solve the problem of grasp detection. Different from anchor-based grasp detection algorithms, in this paper, we propose a keypoint-based scheme to solve this problem. We model an object or a grasp as a single point—the center point of its bounding box. The detector uses keypoint estimation to find the center point and regress to all other object attributes such as size, direction, etc. Experimental results demonstrate that the accuracy of this method is 74.3% in the multi-object grasp dataset VMRD, and the performance on the single-object scene Cornell dataset is competitive with the current state-of-the-art grasp detection algorithm. Robot experiments demonstrate that this method can help robots grasp the target in single-object and multi-object scenes with overall success rates of 94% and 87%, respectively.
In this paper, a novel global point cloud descriptor is proposed for reliable object recognition and pose estimation, which can be effectively applied to robot grasping operation. The viewpoint feature histogram (VFH) is widely used in three-dimensional (3D) object recognition and pose estimation in real scene obtained by depth sensor because of its recognition performance and computational efficiency. However, when the object has a mirrored structure, it is often difficult to distinguish the mirrored poses relative to the viewpoint using VFH. In order to solve this difficulty, this study presents an improved feature descriptor named orthogonal viewpoint feature histogram (OVFH), which contains two components: a surface shape component and an improved viewpoint direction component. The improved viewpoint component is calculated by the orthogonal vector of the viewpoint direction, which is obtained based on the reference frame estimated for the entire point cloud. The evaluation of OVFH using a publicly available data set indicates that it enhances the ability to distinguish between mirrored poses while ensuring object recognition performance. The proposed method uses OVFH to recognize and register objects in the database and obtains precise poses by using the iterative closest point (ICP) algorithm. The experimental results show that the proposed approach can be effectively applied to guide the robot to grasp objects with mirrored poses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.