Highlights d Liver Cancer Model Repository (LIMORE) consists of 81 liver cancer cell models d LIMORE recapitulated genetic heterogeneity of human liver cancers d Molecular and drug screenings provide a pharmacogenomic landscape in liver cancers d Interrogation of the landscape informs biomarkers for liver cancer treatment
Antibody–drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody–drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and release the cytotoxic payload specifically in the tumor. However, existing linkers often release payloads nonspecifically and inevitably lead to off-target toxicity. This defect is becoming an increasingly important factor that restricts the development of ADCs. The pursuit of ADCs with optimal therapeutic windows has resulted in remarkable progress in the discovery and development of novel linkers. The present review summarizes the advance of the chemical trigger, linker‒antibody attachment and linker‒payload attachment over the last 5 years, and describes the ADMET properties of ADCs. This work also helps clarify future developmental directions for the linkers.
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX) models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903) by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR) analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3) was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.
The central nervous system (CNS) is regarded as an immune privileged environment; however, changes in the neuroimmunology paradigm have led to an increased interest in systematic immunotherapy in lung cancer therapy. The presence of the lymphatic system in the CNS as well as the physiological and biochemical changes in the blood-brain barrier in the tumor microenvironment suggests that immunocytes are fully capable of entering and exiting the CNS. Emerging clinical data suggest that inhibitors of programmed death receptor-1/programmed death ligand 1 (PD-1/PD-L1) can stimulate surrounding T cells and thus have antitumor effects in the CNS. For example, PD-1 antibody (pembrolizumab) monotherapy has displayed a 20-30% encephalic response rate in patients with brain metastases from malignant melanoma or non-small cell lung cancer. Combined application of nivolumab and ipilimumab anti-PD-1 and anti-cytotoxic T-lymphocyte-associated protein 4 showed an encephalic response rate of 55% in patients with brain metastases of melanoma. Further evidence is required to verify these response rates and identify the mechanisms of curative effects and drug tolerance. While regional treatments such as whole-brain radiosurgery, stereotactic radiosurgery, and brain surgery remain the mainstream, PD-1/PD-L1 inhibitors display potential decreased neurotoxic effects. To date, five drugs have been approved for use in patients with encephalic metastases of lung carcinoma: the anti-PD-1 drugs, pembrolizumab and nivolumab, and the anti-PD-L1 agents, atezolizumab, durvalumab, and avelumab. In recent years, clinical trials of inhibitors in combination with other drugs to treat brain metastasis have also emerged. This review summarizes the biological principles of PD-1/PD-L1 immunotherapy for brain metastasis of lung cancer, as well as ongoing clinical trials to explore unmet needs.
Gastric cancer is a fatal disease and the availability of early diagnostic methods is limited. There is an urgent need to identify effective targets for early diagnosis and therapeutics. UbcH10 is a ubiquitin-conjugating enzyme with high expression in various types of cancers. In the present study, several gastric tumor cell lines with high or low expression of UbcH10 were exploited to study the role of UbcH10 in gastric cancer. Knockdown of UbcH10 expression using siRNA in gastric cancer cell lines with high expression of UbcH10 resulted in reduced proliferation, increased cisplatin-induced apoptosis and reduced serum-induced ERK, Akt and p38 phosphorylation signaling. In agreement, overexpression of UbcH10 in gastric cancer cell lines with low expression of UbcH10 led to enhanced cell proliferation and resistance to cisplatin-induced apoptosis. Most importantly, IHC analyses showed that the UbcH10 protein was expressed at a high level in most patient gastric cancer tissues, but was absent in adjacent mesenchyme tissues. These data suggest that UbcH10 may promote gastric cancer growth and can serve as a biomarker for diagnosis or as a target for novel therapeutics in gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.