This paper builds on a recently developed immersogeometric fluid–structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.
We present a tetrahedral finite cell method for the simulation of incompressible flow around geometrically complex objects. The method immerses such objects into non-boundary-fitted meshes of tetrahedral finite elements and weakly enforces Dirichlet boundary conditions on the objects' surfaces. Adaptively-refined quadrature rules faithfully capture the flow domain geometry in the discrete problem without modifying the non-boundary-fitted finite element mesh. A variational multiscale formulation provides accuracy and robustness in both laminar and turbulent flow conditions. We assess the accuracy of the method by analyzing the flow around an immersed sphere for a wide range of Reynolds numbers. We show that quantities of interest such as the drag coefficient, Strouhal number and pressure distribution over the sphere are in very good agreement with reference values obtained from standard boundary-fitted approaches. We place particular emphasis on studying the importance of the geometry resolution in intersected elements. Aligning with the immersogeometric concept, our results show that the faithful representation of the geometry in intersected elements is critical for accurate flow analysis. We demonstrate the potential of our proposed method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of an agricultural tractor.
KeywordsImmersed method, Complex geometry, Immersogeometric finite elements, Geometric accuracy in intersected elements, Weakly enforced boundary conditions, Tetrahedral finite cell method
AbstractWe present a tetrahedral finite cell method for the simulation of incompressible flow around geometrically complex objects. The method immerses such objects into non-boundary-fitted meshes of tetrahedral finite elements and weakly enforces Dirichlet boundary conditions on the objects' surfaces. Adaptively-refined quadrature rules faithfully capture the flow domain geometry in the discrete problem without modifying the non-boundary-fitted finite element mesh. A variational multiscale formulation provides accuracy and robustness in both laminar and turbulent flow conditions. We assess the accuracy of the method by analyzing the flow around an immersed sphere for a wide range of Reynolds numbers. We show that quantities of interest such as the drag coefficient, Strouhal number and pressure distribution over the sphere are in very good agreement with reference values obtained from standard boundary-fitted approaches. We place particular emphasis on studying the importance of the geometry resolution in intersected elements. Aligning with the immersogeometric concept, our results show that the faithful representation of the geometry in intersected elements is critical for accurate flow analysis. We demonstrate the potential of our proposed method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of an agricultural tractor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.