Heat shock proteins (HSP) are essential molecular chaperones that play important roles in the stress stimulation of insects. Bemisia tabaci, a phloem feeder and invasive species, can cause extensive crop damage through direct feeding and transmission of plant viruses. Here we employed comprehensive genomics approaches to identity HSP superfamily members in the Middle East Asia Minor 1 whitefly genome. In total, we identified 26 Hsp genes, including three Hsp90, 17 Hsp70, one Hsp60 and five sHSP (small heat shock protein) genes. The HSP gene superfamily of whitefly is expanded compared with the other five insects surveyed here. The gene structures among the same families are relatively conserved. Meanwhile, the motif compositions and secondary structures of BtHsp proteins were predicted. In addition, quantitative polymerase chain reaction analysis showed that the expression patterns of BtHsp gene superfamily were diverse across different tissues of whiteflies. Most Hsp genes were induced or repressed by thermal stress (40°C) and cold treatment (4°C) in whitefly. Silencing the expression of BtHsp70-6 significantly decreased the survival rate of whitefly under 45°C. All the results showed the Hsps conferred thermo-tolerance or cold-tolerance to whiteflies that protect them from being affected by detrimental temperature conditions. Our observations highlighted the molecular evolutionary properties and the response mechanism to temperature assaults of Hsp genes in whitefly.
Apoptosis is generally considered the first line of defense against viral infection. However, the role of apoptosis in the interactions between plant viruses and their insect vectors has rarely been investigated. By studying plant DNA viruses of the genus Begomovirus within the family Geminiviridae, which are transmitted by whiteflies of the Bemisia tabaci species complex in a persistent manner, we revealed that virus-induced apoptosis in insect vectors can facilitate viral accumulation and transmission. We found that infection with tomato yellow leaf curl virus activated the apoptosis pathway in B. tabaci. Suppressing apoptosis by inhibitors or silencing caspase-3 significantly reduced viral accumulation, while the activation of apoptosis increased viral accumulation in vivo. Moreover, the positive effect of whitefly apoptosis on virus accumulation and transmission was not due to its cross talk with the autophagy pathway that suppresses begomovirus infection in whiteflies. We further showed that viral replication, rather than the viral coat protein, is likely the critical factor in the activation of apoptosis by the virus. These novel findings indicate that similarly to many animal and a few plant RNA viruses, plant DNA viruses may activate apoptosis in their insect vectors leading to enhanced viral accumulation and transmission. IMPORTANCE Of the approximately 1,100 known plant viruses, about one-third are DNA viruses that are vectored by insects. Plant virus infections often induce cellular and molecular responses in their insect vectors, which can, in many cases, affect the spread of viruses. However, the mechanisms underlying vector responses that affect virus accumulation and transmission are poorly understood. Here, we examined the role of virus-induced apoptosis in the transmission of begomoviruses, a group of single-stranded plant DNA viruses that are transmitted by whiteflies and cause extensive damage to many crops worldwide. We demonstrated that virus infection can induce apoptosis in the insect vector conferring protection to the virions from degradation, leading to enhanced viral accumulation and transmission to host plants. Our findings provide valuable clues for designing new strategies to block the transmission of insect-vectored plant viruses, particularly plant DNA viruses.
Background Bacterial symbiosis is widespread in arthropods, especially in insects. Some of the symbionts undergo a long-term co-evolution with the host, resulting in massive genome decay. One particular consequence of genome decay is thought to be the elimination of transcriptional elements within both the coding region and intergenic sequences. In the whitefly Bemisia tabaci species complex, the obligate symbiont Candidatus Portiera aleyrodidarum is of vital importance in nutrient provision, and yet little is known about the regulatory capacities of it. Methods Portiera genomes of two whitefly species in China were sequenced and assembled. Gene content of these two Portiera genomes was predicted, and then subjected to Kyoto Encyclopedia of Genes and Genomes pathway analysis. Together with two other Portiera genomes from whitefly species available previously, four Portiera genomes were utilized to investigate regulatory capacities of Portiera, focusing on transcriptional elements, including genes related with transcription and functional elements within the intergenic spacers. Results Comparative analyses of the four Portiera genomes of whitefly B. tabaci indicate that the obligate symbionts Portiera is similar in different species of whiteflies, in terms of general genome features and possible functions in the biosynthesis of essential amino acids. The screening of transcriptional factors suggests compromised ability of Portiera to regulate the essential amino acid biosynthesis pathways. Meanwhile, thermal tolerance ability of Portiera is indicated with the detection of a σ32 factor, as well as two predicted σ32 binding sites. Within intergenic spacers, functional elements are predicted, including 37 Shine-Dalgarno sequences and 34 putative small RNAs.
Bacterial symbionts form an intimate relationship with their hosts and confer advantages to the hosts in most cases. Genomic information is critical to study the functions and evolution of bacterial symbionts in their host. As most symbionts cannot be cultured in vitro, methods to isolate an adequate quantity of bacteria for genome sequencing are very important. In the whitefly Bemisia tabaci, a number of endosymbionts have been identified and are predicted to be of importance in the development and reproduction of the pests through multiple approaches. However, the mechanism underpinning the associations remains largely unknown. The obstacle partially comes from the fact that the endosymbionts in whitefly, mostly restrained in bacteriocytes, are hard to separate from the host cells. Here we report a step-by-step protocol for the identification, extraction and purification of endosymbionts from the whitefly B. tabaci mainly by dissection and filtration. Endosymbiont samples prepared by this method, although still a mixture of different endosymbiont species, are suitable for subsequent genome sequencing and analysis of the possible roles of endosymbionts in B. tabaci. This method may also be used to isolate endosymbionts from other insects.
Nutritional mutualism between insects and symbiotic bacteria is widespread. The various sap‐feeding whitefly species within the Bemisia tabaci complex associate with the same obligate symbiont (Portiera) and multiple secondary symbionts. It is often assumed that some of the symbionts residing in the whiteflies play crucial roles in the nutritional physiology of their insect hosts. Although effort has been made to understand the functions of the whitefly symbionts, the metabolic complementarity offered by these symbionts to the hosts is not yet well understood. We examined two secondary symbionts, Arsenophonus and Wolbachia, in two species of the B. tabaci whitefly complex, provisionally named as Asia II 3 and China 1. Genomic sequence analyses revealed that Arsenophonus and Wolbachia retained genes responsible for the biosynthesis of B vitamins. We then conducted transcriptomic surveys of the bacteriomes in these two species of whiteflies together with that in another species named MED of this whitefly complex previously reported. The analyses indicated that several key genes in B vitamin syntheses from the three whitefly species were identical. Our findings suggest that, similar to another secondary symbiont Hamiltonella, Arsenophonus and Wolbachia function in the nutrient provision of host whiteflies. Although phylogenetically distant species of symbionts are associated with their respective hosts, they have evolved and retained similar functions in biosynthesis of some B vitamins. Such metabolic complementarity between whiteflies and symbionts represents an important feature of their coevolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.