This paper studies the problem of generating cooperative feasible paths for formation rendezvous of unmanned aerial vehicles (UAVs). Cooperative path-planning for multi-UAV formation rendezvous is mostly a complicated multi-objective optimization problem with many coupled constraints. In order to satisfy the kinematic constraints, i.e., the maximum curvature constraint and the requirement of continuous curvature of the UAV path, the Pythagorean hodograph (PH) curve is adopted as the parameterized path because of its curvature continuity and rational intrinsic properties. Inspired by the co-evolutionary theory, a distributed cooperative particle swarm optimization (DCPSO) algorithm with an elite keeping strategy is proposed to generate a flyable and safe path for each UAV. This proposed algorithm can meet the kinematic constraints of UAVs and the cooperation requirements among UAVs. Meanwhile, the optimal or sub-optimal paths can be obtained. Finally, numerical simulations in 2-D and 3-D environments are conducted to demonstrate the feasibility and stability of the proposed algorithm. Simulation results show that the paths generated by the proposed DCPSO can not only meet the kinematic constraints of UAVs and safety requirements, but also achieve the simultaneous arrival and collision avoidance between UAVs for formation rendezvous. Compared with the cooperative co-evolutionary genetic algorithm (CCGA), the proposed DCPSO has better stability and a higher searching success rate.
Pervasive and continuous energy solutions are highly desired in the era of the Internet of Things for powering wide-range distributed devices/sensors. Wind energy has been widely regarded as an ideal energy source for distributed devices/sensors due to the advantages of being sustainable and renewable. Herein, we propose a high-performance flag-type triboelectric nanogenerator (HF-TENG) to efficiently harvest widely distributed and highly available wind energy. The HF-TENG is composed of one piece of polytetrafluoroethylene (PTFE) membrane and two carbon-coated polyethylene terephthalate (PET) membranes with their edges sealed up. Two ingenious internal-structure designs significantly improve the output performance. One is to place the supporting sponge strips between the PTFE and the carbon electrodes, and the other is to divide the PTFE into multiple pieces to obtain a multi-degree of freedom. Both methods can improve the degree of contact and separation between the two triboelectric materials while working. When the pair number of supporting sponge strips is two and the degree of freedom is five, the maximum voltage and current of HF-TENG can reach 78 V and 7.5 μA, respectively, which are both four times that of the untreated flag-type TENG. Additionally, the HF-TENG was demonstrated to power the LEDs, capacitors, and temperature sensors. The reported HF-TENG significantly promotes the utilization of the ambient wind energy and sheds some light on providing a pervasive and sustainable energy solution to the distributed devices/sensors in the era of the Internet of Things.
Rewritable security printing has been successfully achieved based on a biofuel-driven transient supramolecular co-assembly mediated by an enzyme, providing fascinating potential for artificial functional materials with a biomimetic mode.
A 1,8-dioxapyrene-based electrofluorochromic supramolecular polymer was constructed through the coordination of terpyridine ligands with Eu3+ ions. The polymer can be used in anti-counterfeiting inks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.