Congenital hyperinsulinism (CHI) is a disease characterized by persistent insulin secretion despite severe hypoglycemia. Mutations in the pancreatic ATP-sensitive K ؉ (K ATP ) channel proteins sulfonylurea receptor 1 (SUR1) and Kir6.2, encoded by ABCC8 and KCNJ11, respectively, is the most common cause of the disease. Many mutations in SUR1 render the channel unable to traffic to the cell surface, thereby reducing channel function. Previous studies have shown that for some SUR1 trafficking mutants, the defects could be corrected by treating cells with sulfonylureas or diazoxide. The purpose of this study is to identify additional mutations that cause channel biogenesis/trafficking defects and those that are amenable to rescue by pharmacological chaperones. Fifteen previously uncharacterized CHI-associated missense SUR1 mutations were examined for their biogenesis/trafficking defects and responses to pharmacological chaperones, using a combination of immunological and functional assays. Twelve of the 15 mutations analyzed cause reduction in cell surface expression of K ATP channels by >50%. Sulfonylureas rescued a subset of the trafficking mutants. By contrast, diazoxide failed to rescue any of the mutants. Strikingly, the mutations rescued by sulfonylureas are all located in the first transmembrane domain of SUR1, designated as TMD0. All TMD0 mutants rescued to the cell surface by the sulfonylurea tolbutamide could be subsequently activated by metabolic inhibition on tolbutamide removal. Our study identifies a group of CHI-causing SUR1 mutations for which the resulting K ATP channel trafficking and expression defects may be corrected pharmacologically to restore channel function. Diabetes
ATP-sensitive potassium (K(ATP)) channels of pancreatic beta-cells mediate glucose-induced insulin secretion by linking glucose metabolism to membrane excitability. The number of plasma membrane K(ATP) channels determines the sensitivity of beta-cells to glucose stimulation. The K(ATP) channel is formed in the endoplasmic reticulum (ER) on coassembly of four inwardly rectifying potassium channel Kir6.2 subunits and four sulfonylurea receptor 1 (SUR1) subunits. Little is known about the cellular events that govern the channel's biogenesis efficiency and expression. Recent studies have implicated the ubiquitin-proteasome pathway in modulating surface expression of several ion channels. In this work, we investigated whether the ubiquitin-proteasome pathway plays a role in the biogenesis efficiency and surface expression of K(ATP) channels. We provide evidence that, when expressed in COS cells, both Kir6.2 and SUR1 undergo ER-associated degradation via the ubiquitin-proteasome system. Moreover, treatment of cells with proteasome inhibitors MG132 or lactacystin leads to increased surface expression of K(ATP) channels by increasing the efficiency of channel biogenesis. Importantly, inhibition of proteasome function in a pancreatic beta-cell line, INS-1, that express endogenous K(ATP) channels also results in increased channel number at the cell surface, as assessed by surface biotinylation and whole cell patch-clamp recordings. Our results support a role of the ubiquitin-proteasome pathway in the biogenesis efficiency and surface expression of beta-cell K(ATP) channels.
Myocardin gene has been identified as a master regulator of smooth muscle cell differentiation. Smooth muscle cells play a critical role in the pathogenesis of hypoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodelling (PVR). The purpose of this study was to investigate the change of myocardin gene expression in the pulmonary vessels of hypoxia-induced PH affected by Sildenafil treatment and the involvement of endothelial cells transdifferentiation into smooth muscle cells in the process of hypoxia-induced PH and PVR. Myocardin and relative markers were investigated in animal models and cultured endothelial cells. Mean pulmonary artery pressure (mPAP) was measured. Immunohistochemistry and immunofluorescence were used to show the expression of smooth muscle alpha-actin (SMA), in situ hybridization (ISH) and reverse transcription polymerase chain reaction (RT-PCR) were performed respectively to detect the myocardin and SMA expression at mRNA levels. Small interfering RNA (siRNA) induced suppression of myocardin in cultured cells. We confirmed that hypoxia induced the PH and PVR in rats. Sildenafil could attenuate the hypoxia-induced PH. We found that myocardin mRNA expression is upregulated significantly in the hypoxic pulmonary vessels and cultured cells but downregulated in PH with Sildenafil treatment. The porcine pulmonary artery endothelial cells (PAECs) transdifferentiate into smooth muscle-like cells in hypoxic culture while the transdifferentiation did not occur when SiRNA of myocardin was applied. Our results suggest that myocardin gene, as a marker of smooth muscle cell differentiation, was expressed in the pulmonary vessels in hypoxia-induced PH rats, which could be downregulated by Sildenafil treatment, as well as in hypoxic cultured endothelial cells. Hypoxia induced the transdifferentiation of endothelial cells of vessels into smooth muscle-like cells which was regulated by myocardin.
The inwardly rectifying potassium channel Kir6.2 is the pore-forming subunit of the ATP-sensitive potassium (K ATP ) channel, which controls insulin secretion by coupling glucose metabolism to membrane potential in -cells. Loss of channel function because of mutations in Kir6.2 or its associated regulatory subunit, sulfonylurea receptor 1, causes congenital hyperinsulinism (CHI), a neonatal disease characterized by persistent insulin secretion despite severe hypoglycemia. Here, we report a novel K ATP channel gating defect caused by CHI-associated Kir6.2 mutations at arginine 301 (to cysteine, glycine, histidine, or proline). These mutations in addition to reducing channel expression at the cell surface also cause rapid, spontaneous current decay, a gating defect we refer to as inactivation. Based on the crystal structures of Kir3.1 and KirBac1.1, Arg-301 interacts with several residues in the neighboring Kir6.2 subunit. Mutation of a subset of these residues also induces channel inactivation, suggesting that the disease mutations may cause inactivation by disrupting subunit-subunit interactions. To evaluate the effect of channel inactivation on -cell function, we expressed an alternative inactivation mutant R301A, which has equivalent surface expression efficiency as wild type channels, in the insulin-secreting cell line INS-1. Mutant expression resulted in more depolarized membrane potential and elevated insulin secretion at basal glucose concentration (3 mM) compared with cells expressing wild type channels, demonstrating that the inactivation gating defect itself is sufficient to cause loss of channel function and hyperinsulinism. Our studies suggest the importance of Kir6.2 subunit-subunit interactions in K ATP channel gating and function and reveal a novel gating defect underlying CHI.Inwardly rectifying potassium (Kir) channels are important for governing the resting membrane potential in a wide variety of cell types (1). In the islet -cell, Kir6.2 complexes with the sulfonylurea receptor 1 (SUR1) 2 to form the ATP-sensitive potassium (K ATP ) channel which regulates membrane potential according to the energetic state of the cell, thereby mediating glucose-stimulated insulin secretion (2-4). The gating properties that are critical for the physiological function of K ATP channels are their sensitivity to intracellular nucleotides ATP and ADP, whose concentrations fluctuate as glucose levels vary. Both Kir6.2 and SUR1 subunits participate in nucleotide regulation of the channel; ATP inhibits channel activity by binding to the Kir6.2 subunit, whereas Mg 2ϩ -complexed ATP and ADP stimulate channel activity by interacting with SUR1. As glucose concentrations rise, K ATP channels are driven to closure by the increase in ATP and decrease in ADP levels, resulting in membrane depolarization, activation of voltage-gated calcium channels, and insulin secretion. On the other hand, a fall in glucose concentrations promotes K ATP channel opening to stop insulin secretion. Other molecules that have emerged from recen...
Introduction: Dental pulp stem cell (DPSC)-mediated dental pulp regeneration is considered a promising method for the treatment of deep caries with pulpitis. However, mesenchymal stem cell (MSC) senescence is an adverse factor from the perspective of cell-based therapies. In this study, we investigated the characteristics and expression profiles of DPSCs from young and old donors. Methods: DPSCs from young and old donors were cultured in differentiation medium, and their differentiation potentials were assessed. Long noncoding RNA (LncRNA) microarray assays and a bioinformatic analysis were performed to investigate differences in LncRNA and mRNA expression profiles between DPSCs from young and old donors. Results: We found that DPSCs from young donors exhibited more powerful proliferation ability and greater osteogenic and adipogenic differentiation potentials than DPSCs from old donors. In DPSCs from young donors, numerous LncRNAs were significantly up- (n = 389) or down-regulated (n = 172) compared to DPSCs from old donors. Furthermore, 304 mRNAs were differentially expressed, including 247 up-regulated genes and 57 down-regulated genes in DPSCs from young donors. The bioinformatic analysis identified that several pathways may be associated with DPSC characteristics, such as those involved in the cell cycle and RNA transport, and revealed nuclear transcription factor Y subunit β, general transcription factor IIB, and nuclear receptor subfamily 3 group C member 1 as core regulatory factors and FR249114, FR299091, and ENST00000450004 as core LncRNAs. Conclusions: Our results indicated that senescence impaired the proliferation and differentiation potentials of DPSCs and that donor age is an important factor that affects their use for tooth regeneration. We also provide insight into the mechanisms responsible for senescence in DPSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.