Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) is a conducting polymer and is a promising material for use in optoelectronic devices. Adding dopants to PEDOT/PSS significantly affects its optoelectronic properties: in this article we use terahertz time domain spectroscopy (THz-TDS) to probe the effects of dopants dimethyl sulfoxide (DMSO) and ethylene glycol. The carrier density, mobility, and conductivity are calculated from the THz measurements by fitting the dielectric permittivity to the Drude−Smith model. This gives us an insight into the conductivity enhancement mechanisms, and we find evidence to suggest that both carrier delocalization and charge screening play a role, although the relative importance of these two mechanisms depends upon both dopant polarity and concentration. To demonstrate an application of this finding, we design and fabricate broadband terahertz neutral density filters based upon 6% DMSO doped PEDOT/PSS thin films of varying thickness and demonstrate optical densities between 0.14 and 0.53 from 0.5 to 2.2 THz with a comparable frequency variation to commercially available optical frequency ND filters.
Vandium dioxide (VO2) shows promise as the basis for a terahertz wave modulator due to its phase transition properties. Its insulator-metal-transition (IMT) can be induced either through temperature changes, optically or electronically. Recently, a metal-VO2 wire grid structure was proposed which was able to increase the modulation depth (MD) from 0.65 to 0.9, suggesting that these simple metallic structures could greatly increase the difference in terahertz transmission for the insulating and metallic states of VO2 based structures. In this paper, we have found that the increase in MD decreases with increasing VO2 conductivity in the metallic state, resulting in a maximum modulation depth of approximately 0.95 for wire grid structures that preserves a high transmission in the insulating state. Surprisingly, we find that deposition of VO2 on top of metallic structures results in reduced performance. However, we find that devices based upon VO2 alone can achieve unexpectedly high performance. In this work we present a device with a switchable wire-grid polariser effect over a broadband frequency range (from 0.3 to 2 THz). To our knowledge this is the first such broadband metamaterial based solely on VO2. The ability to switch on a metamaterial property like this to produce a polarisation effect is very useful for future terahertz optical devices such as rotators and waveplates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.