Introduction: This study aimed to investigate the distribution of corneal spherical aberration (CSA) and the relationship between corneal curvature with CSA and anterior chamber parameters in age-related cataract patients with normal axial lengths and shallow anterior chambers. Methods: Preoperative data of age-related cataract patients were collected in this retrospective comparative study. According to the average corneal curvature, the eyes were divided into groups of K m \ 42 diopters (D), 42 D B K m \ 45 D, and K m C 45 D. The axial length (AL) and corneal curvature were obtained using IOLMaster. CSA, anterior chamber depth (ACD), anterior chamber volume (ACV), anterior chamber angle (ACA), and corneal diameter (CD) were acquired according to Pentacam. The above parameters were compared among the three groups. Correlation analysis was applied to these parameters. Results: The average CSA value of 753 eyes was 0.41 ± 0.27 lm, with no significant difference among the three groups. Overall, CSA was significantly correlated with corneal curvature and ACD. The comparison of ACD among the three groups showed significant differences between the K m C 45 D group, K m \ 42 D group, and 42 D B K m \ 45 D group. Corneal curvature was positively correlated with ACD, and further analysis confirmed that the relationship was significant only in the K m C 45 D group. There were statistically significant differences in CD between the three groups. A significant correlation was found in corneal curvature and CD in all eyes, which was also found in the 42 D B K m \ 45 D group and the K m C 45 D group. Concerning ACV and ACA, no correlation with corneal curvature was found. In addition, the mean ACV and ACA of the three groups did not show any significant difference. Conclusions: CSA was higher in this population and had individual variance. Compared with ACD, ACV and ACA were more stable in different corneal curvatures and more objective in representing the anterior chamber space.
Background To explore the efficacy and safety of laser peripheral iridoplasty (LPIp) with different energy levels and locations in the treatment of primary angle closure glaucoma (PACG) assessed by swept anterior segment optical coherence tomography (AS-OCT). Methods We enrolled patients with suspected PACG following best-corrected visual acuity (BCVA), intraocular pressure (IOP), anterior chamber gonioscopy, ultrasound biomicroscopy(UBM), optic disc OCT, and visual field examinations. After Pentacam and AS-OCT measurements, the patients were randomly divided into four treatment groups for LPIp with two different energy levels (high vs. low energy) and two locations (far from the periphery vs. near the periphery) and combined with laser peripheral iridotomy. BCVA, IOP, pupil diameter, central anterior chamber depth, anterior chamber volume, anterior opening distance (AOD)500, AOD750, trabecular iris angle (TIA)500, and TIA750 in four quadrants before and after laser treatment were compared. Results We followed up 32 patients (64 eyes; average age, 61.80 ± 9.79 years; 8 patients/16 eyes per group) for up to 2 years. The IOP of all enrolled patients was decreased after surgery compared to that before (t = 3.297, P = 0.002), the volume of the anterior chamber was increased (t=-2.047, P = 0.047), and AOD500, AOD750, TIA500, and TIA750 were increased (all P < 0.05). Within-group comparisons showed that BCVA in the low-energy/far-periphery group was improved after surgery (P < 0.05). After surgery, the IOP was decreased in the two high-energy groups, whereas the volume of the anterior chamber, AOD500, AOD750, TIA500, and TIA750 were increased in all groups (all P < 0.05). However, when comparing every two groups, the high-energy/far-periphery group showed a stronger effect on pupil dilation than the low-energy/near-periphery group (P = 0.045). The anterior chamber volume in the high-energy/near-periphery group was larger than that in the high-energy/far-periphery group (P = 0.038). The change in TIA500 was for 6 points smaller in the low-energy/near-periphery group than in the low-energy/far-periphery group (P = 0.038). Other parameters showed no significant group differences. Conclusion LPIp combined with iridotomy can effectively reduce IOP, increase anterior chamber volume, increase chamber angle opening distance, and widen the trabecular iris angle. Intraoperatively, high-energy laser spots positioned one spot diameter from the scleral spur can obtain the best effect and safety. Swept AS-OCT can safely and effectively quantify the anterior chamber angle.
Background To explore the efficacy and safety of laser peripheral iridoplasty (LPIp) with different energy levels and locations in the treatment of primary angle closure disease (PACD) assessed by swept-source anterior segment optical coherence tomography (AS-OCT). Methods We enrolled patients with PACD following best-corrected visual acuity (BCVA), intraocular pressure (IOP), anterior chamber gonioscopy, ultrasound biomicroscopy(UBM), optic disc OCT, and visual field examinations. After Pentacam and AS-OCT measurements, the patients were randomly divided into four treatment groups for LPIp with two different energy levels (high vs. low energy) and two locations (far from the periphery vs. near the periphery) and combined with laser peripheral iridotomy. BCVA, IOP, pupil diameter, central anterior chamber depth, anterior chamber volume, anterior opening distance (AOD)500, AOD750, trabecular iris angle (TIA)500, and TIA750 in four quadrants before and after laser treatment were compared. Results We followed up 32 patients (64 eyes; average age, 61.80 ± 9.79 years; 8 patients/16 eyes per group) for up to 2 years. The IOP of all enrolled patients was decreased after surgery compared to that before (t = 3.297, P = 0.002), the volume of the anterior chamber was increased (t=-2.047, P = 0.047), and AOD500, AOD750, TIA500, and TIA750 were increased (all P < 0.05). Within-group comparisons showed that BCVA in the low-energy/far-periphery group was improved after surgery (P < 0.05). After surgery, the IOP was decreased in the two high-energy groups, whereas the volume of the anterior chamber, AOD500, AOD750, TIA500, and TIA750 were increased in all groups (all P < 0.05). However, when comparing every two groups, the high-energy/far-periphery group showed a stronger effect on pupil dilation than the low-energy/near-periphery group (P = 0.045). The anterior chamber volume in the high-energy/near-periphery group was larger than that in the high-energy/far-periphery group (P = 0.038). The change in TIA500 was for 6 points smaller in the low-energy/near-periphery group than in the low-energy/far-periphery group (P = 0.038). Other parameters showed no significant group differences. Conclusion LPIp combined with iridotomy can effectively reduce IOP, increase anterior chamber volume, increase chamber angle opening distance, and widen the trabecular iris angle. Intraoperatively, high-energy laser spots positioned one spot diameter from the scleral spur can obtain the best effect and safety. Swept-source AS-OCT can safely and effectively quantify the anterior chamber angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.