The failure to detect anomalies and maneuvering of the orbits of navigation satellite sensors will deteriorate the performance of positioning and orbit determination. Motivated by the influence of the frequent maneuvering of BDS GEO and IGSO satellites, this paper analyzes the limitations of existing methods, where BDS orbit maneuvering and anomalies can be detected, and develops a method to solve this problem based on the RMS model of orbit mutual differences proposed in this paper. The performance of this method was assessed by comparison with the health flag of broadcast ephemeris, precise orbit products of GFZ, the O-C values of a GNSS station and a conventional method. The results show that the performance of the method developed in this paper is better than that of the conventional method when the periodicity and trend items are obvious. Meanwhile, three additional verification results show that the method developed in this paper can find error information in the merged broadcast ephemeris provided by iGMAS. Furthermore, from the testing results, it can be seen that the detection of anomaly and maneuvering items do not affect each other based on the robust thresholds constructed in this paper. In addition, the precise orbit of the maneuvering satellites can be determined under the circumstances that the maneuver information detected in this paper is used, and the root mean square (RMS) of orbit overlap comparison for GEO-03/IGSO-03 in Radial, Along, Cross, 1D-RMS are 0.7614/0.4460 m, 1.8901/0.3687 m, 0.3392/0.2069 m, 2.0657/0.6145 m, respectively.
The predicted parts of ultra-rapid orbits are important for (near) real-time Global Navigation Satellite System (GNSS) precise applications; and there is little research on GPS/GLONASS/BDS/Galileo/QZSS five-system ultra-rapid precise orbit determination; based on the one-step method and double-difference observation model. However; the successful development of a software platform for solving five-system ultra-rapid orbits is the basis of determining and analyzing these orbits. Besides this; the different observation models and processing strategies facilitate to validate the reliability of the various ultra-rapid orbits. In this contribution; this paper derives the double-difference observation model of five-system ultra-rapid precise orbit determination; based on a one-step method; and embeds this method and model into Bernese v5.2; thereby forming a new prototype software platform. For validation purposes; 31 days of real tracking data; collected from 130 globally-distributed International GNSS Service (IGS) multi-GNSS Experiment (MGEX) stations; are used to determine a five-system ultra-rapid precise orbit. The performance of the software platform is evaluated by analysis of the orbit discontinuities at day boundaries and by comparing the consistency with the MGEX orbits from the Deutsches GeoForschungsZentrum (GFZ); between the results of this new prototype software platform and the ultra-rapid orbit provided by the International GNSS Monitoring and Assessment System (iGMAS) analysis center (AC) at the Institute of Geodesy and Geophysics (IGG). The test results show that the average standard deviations of orbit discontinuities in the three-dimension direction are 0.022; 0.031; 0.139; 0.064; 0.028; and 0.465 m for GPS; GLONASS; BDS Inclined Geosynchronous Orbit (IGSO); BDS Mid-Earth Orbit (MEO); Galileo; and QZSS satellites; respectively. In addition; the preliminary results of the new prototype software platform show that the consistency of this platform has been significantly improved compared to the software package of the IGGAC.
Abnormal information of satellite orbits inevitably appears in the broadcast ephemeris. Failure to obtain unhealthy information on GPS satellite orbits in precise orbit determination (POD) degrades GPS service performance. At present, the reliable unhealthy information published by the Center for Orbit Determination in Europe (CODE) is usually used, but it has at least one-day latency, and the current level of unhealthy information cannot fully meet the requirements of rapid and real-time geodetic applications, especially for non-IGS (International global navigation satellite systems (GNSS) Service) analysis centers and BeiDou navigation satellite system (BDS) users. Furthermore, the unhealthy orbit information detected by the traditional method, which is based on the synchronized pseudo-range residuals and regional observation network, cannot meet the requirement of setting separate sub-arcs in POD. In view of these problems, we propose a three-step method for determining unhealthy time periods of GPS satellite orbit in broadcast ephemeris during POD to provide reliable unhealthy information in near-real time. This method is a single-epoch solution, and it can detect unhealthy time periods in each sampling of observation in theory. It was subsequently used to detect unhealthy time periods for satellites G09 and G01 based on the 111 globally distributed tracking stations in the IGS. The performance of the new method was evaluated using cross-validation. Based on the test results, it detected an orbital leap for G09 in the broadcast ephemeris from 09:59:42 to 14:00:42 on 25 August 2017. Compared to the traditional method, the unhealthy start time using the three-step method was in better agreement with the information provided by CODE’s satellite crux files. G01 did not appear to have an orbital leap on the specified date, but it was misjudged by the traditional method. Furthermore, compared to the traditional method, the three-step method can perform unhealthy time period detection for a satellite all day long. In addition, precise orbit determination for unhealthy satellites is realized successfully with the unhealthy orbit arc information identified in this study. Compared to the CODE orbit, the root mean square and standard deviation of the new method for G09 are less than 2 cm, and the three-step method shows an improvement in accuracy compared with the traditional method. From the above results, it can be seen that this study can provide a feasible approach to meet the real-time unhealthy time period detection requirements of a satellite orbit in a broadcast ephemeris during POD. Furthermore, compared to waiting for updates of CODE’s satellite crux files or for accumulating delayed observation data, it has the potential to provide additional information in the process of generating ultra-rapid/real-time orbits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.