Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.
The observation that Tcf3 (MGI name: Tcf7l1) bound the same genes as core stem cell transcription factors, Oct4 (MGI name:Pou5f1), Sox2 and Nanog, revealed a potentially important aspect of the poorly understood mechanism whereby Wnts stimulate self renewal of pluripotent mouse embryonic stem (ES) cells. Although the conventional view of Tcf proteins as the β-catenin-binding effectors of Wnt signaling suggested Tcf3-β-catenin mediated activation of target genes would stimulate ES cell self renewal, here we show that an antagonistic relationship between Wnt3a and Tcf3 on gene expression is important for regulating ES cell self renewal. Genetic ablation of Tcf3 replaced the requirement for exogenous Wnt3a or GSK3-inhibition for self renewal of ES cells, demonstrating that inhibition of Tcf3-repressor is the necessary downstream effect of Wnt signaling. Interestingly, the molecular mechanism underlying Wnt’s effects required both Tcf3-β-catenin and Tcf1-β-catenin interactions, as they each contributed to Wnt stimulation of self renewal and gene expression. Finally, the combination of Tcf3 and Tcf1 was necessary to recruit Wnt-stabilized β-catenin to Oct4 binding sites in ES cell chromatin. These results elucidate the molecular link between the effects of Wnt and the regulation of the Oct4/Sox2/Nanog network.
Nuclear architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as aging1-4. It is then plausible that diseases whose manifestations correlate with aging might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of aging-associated disorders by focusing on a Leucine Rich Repeat Kinase 2 (LRRK2) dominant mutation (G2019S) shown to associate with familial and sporadic Parkinson’s Disease (PD), as well as impairment of adult neurogenesis in mice5. Here, we report on the generation of PD patient-derived induced pluripotent stem cells (iPSCs) and the implications of LRRK2(G2019S) in human neural stem cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in PD-iPSCs and recapitulated upon targeted knock-in of LRRK2(G2019S) in human embryonic stem cells (hESCs). Analysis of human brain tissue showed nuclear envelope impairment in clinically diagnosed Parkinson’s patients. Altogether, our results identify the nucleus as a previously unknown cellular organelle in Parkinson’s pathology and may help open new avenues for PD diagnoses as well as potential development of therapeutics targeting this fundamental cell structure.
The dual function of stem cells requires them not only to form new stem cells through self-renewal but also to form lineage-committed cells through differentiation. Embryonic stem cells (ESC), which are derived from the blastocyst inner cell mass, retain properties of self-renewal and the potential for lineage commitment. To balance self-renewal and differentiation, ESC must carefully control the levels of several transcription factors, including Nanog, Sox2, and Oct4. While molecular mechanisms promoting transcription of these genes have been described, mechanisms preventing excessive levels in self-renewing ESC remain unknown. By examining the function of the TCF family of transcription factors in ESC, we have found that Tcf3 is necessary to limit the steady-state levels of Nanog mRNA, protein, and promoter activity in self-renewing ESC. Chromatin immunoprecipitation and promoter reporter assays showed that Tcf3 bound to a promoter regulatory region of the Nanog gene and repressed its transcriptional activity in ESC through a Groucho interaction domaindependent process. The absence of Tcf3 caused delayed differentiation of ESC in vitro as elevated Nanog levels persisted through 5 days of embryoid body formation. These new data support a model wherein Tcf3-mediated control of Nanog levels allows stem cells to balance the creation of lineage-committed and undifferentiated cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.