Objective To evaluate viral loads at different stages of disease progression in patients infected with the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first four months of the epidemic in Zhejiang province, China. Design Retrospective cohort study. setting A designated hospital for patients with covid-19 in Zhejiang province, China. ParticiPants 96 consecutively admitted patients with laboratory confirmed SARS-CoV-2 infection: 22 with mild disease and 74 with severe disease. Data were collected from 19
A novel human coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV), has caused outbreaks of a SARS-like illness with high case fatality rate. The reports of its personto-person transmission through close contacts have raised a global concern about its pandemic potential. Here we characterize the six-helix bundle fusion core structure of MERS-CoV spike protein S2 subunit by X-ray crystallography and biophysical analysis. We find that two peptides, HR1P and HR2P, spanning residues 998-1039 in HR1 and 1251-1286 in HR2 domains, respectively, can form a stable six-helix bundle fusion core structure, suggesting that MERS-CoV enters into the host cell mainly through membrane fusion mechanism. HR2P can effectively inhibit MERS-CoV replication and its spike protein-mediated cell-cell fusion. Introduction of hydrophilic residues into HR2P results in significant improvement of its stability, solubility and antiviral activity. Therefore, the HR2P analogues have good potential to be further developed into effective viral fusion inhibitors for treating MERS-CoV infection.
BackgroundTimely diagnosis of SARS-CoV-2 infection is a prerequisite for treatment and prevention. The serology characteristics and complement diagnosis value of the antibody test to RNA test need to be demonstrated.MethodSerial sera of 80 patients with PCR-confirmed COVID-19 were collected at the First Affiliated Hospital of Zhejiang University, China. Total antibody (Ab), IgM and IgG antibodies against SARS-CoV-2 were detected, and the antibody dynamics during the infection were described.ResultsThe seroconversion rates for Ab, IgM and IgG were 98.8%, 93.8% and 93.8%, respectively. The first detectible serology marker was Ab, followed by IgM and IgG, with a median seroconversion time of 15, 18 and 20 days post exposure (d.p.e) or 9, 10 and 12 days post onset (d.p.o), respectively. The antibody levels increased rapidly beginning at 6 d.p.o. and were accompanied by a decline in viral load. For patients in the early stage of illness (0–7 d.p.o), Ab showed the highest sensitivity (64.1%) compared to IgM and IgG (33.3% for both, p<0.001). The sensitivities of Ab, IgM and IgG increased to 100%, 96.7% and 93.3% 2 weeks later, respectively. When the same antibody type was detected, no significant difference was observed between enzyme-linked immunosorbent assays and other forms of immunoassays.ConclusionsA typical acute antibody response is induced during SARS-CoV-2 infection. Serology testing provides an important complement to RNA testing in the later stages of illness for pathogenic specific diagnosis and helpful information to evaluate the adapted immunity status of patients.
Respiratory tract viral infection caused by viruses or bacteria isone of the most common diseases in human worldwide, while those caused by emerging viruses, such as the novel coronavirus, 2019-nCoV that caused the pneumonia outbreak in Wuhan, China most recently, have posed great threats to global public health. Identification of the causative viral pathogens of respiratory tract viral infections is important to select an appropriate treatment, save people's lives, stop the epidemics, and avoid unnecessary use of antibiotics. Conventional diagnostic tests, such as the assays for rapid detection of antiviral antibodies or viral antigens, are widely used in many clinical laboratories. With the development of modern technologies, new diagnostic strategies, including multiplex nucleic acid amplification and microarray-based assays, are emerging. This review summarizes currently available and novel emerging diagnostic methods for the detection of common respiratory viruses, such as influenza virus, human respiratory syncytial virus, coronavirus, human adenovirus, and human rhinovirus. Multiplex assays for simultaneous detection of multiple respiratory viruses are also described. It is anticipated that such data will assist researchers and clinicians to develop appropriate diagnostic strategies for timely and effective detection of respiratory virus infections. K E Y W O R D S adenovirus, coronavirus, diagnostic methods, influenza virus, respiratory syncytial virus, respiratory viral infection, rhinovirus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.