Circulating exosome holds great potentials as biomarker for diagnosis and prognosis of human cancers. Previously, we have applied small RNA sequencing to identify aberrantly expressed exosomal miRNAs as candidates for diagnostic markers in colon cancer patients. In this validation cohort, plasma derived exosomal miRNA was isolated from 50 early-stage colon cancer patients and 50 matched healthy volunteers. Real-time qRT-PCR revealed that miR-125a-3p, miR-320c were significantly up-regulated in plasma exosomes of the patients with early stage colon cancer. ROC curve showed that miR-125a-3p abundant level may predict colon cancer with an area of under the curve (AUC) of 68.5%, in comparison to that of CEA at 83.6%. Combination of miR-125a-3P and CEA improved the AUC to 85.5%. In addition, plasma exosome level of miR-125a-3p and miR-320c showed significant correlation with nerve infiltration (P < 0.01), but not with tumor size, infiltration depth, and differentiation degree (P > 0.05). On the contrary, plasma CEA level is correlated with tumor size, infiltration depth, and differentiation degree (P < 0.05, r = 0.3009–0.7270), but not with nerve infiltration (P = 0.744). In conclusion, this follow-up study demonstrated circulating plasma exosomal miR-125a-3p is readily accessible as diagnosis biomarker for early-stage colon cancer. When combined with conventional diagnostic markers, miR-125a-3p can improve the diagnostic power.
BackgroundImmune checkpoint inhibitors (ICIs), including anti-PD-1 therapy, have limited efficacy in patients with microsatellite stable (MSS) colorectal cancer (CRC). Interleukin 17A (IL-17A) activity leads to a protumor microenvironment, dependent on its ability to induce the production of inflammatory mediators, mobilize myeloid cells and reshape the tumor environment. In the present study, we aimed to investigate the role of IL-17A in resistance to antitumor immunity and to explore the feasibility of anti-IL-17A combined with anti-PD-1 therapy in MSS CRC murine models.MethodsThe expression of programmed cell death-ligand 1 (PD-L1) and its regulation by miR-15b-5p were investigated in MSS CRC cell lines and tissues. The effects of miR-15b-5p on tumorigenesis and anti-PD-1 treatment sensitivity were verified both in vitro and in colitis-associated cancer (CAC) and APCmin/+ murine models. In vivo efficacy and mechanistic studies were conducted using antibodies targeting IL-17A and PD-1 in mice bearing subcutaneous CT26 and MC38 tumors.ResultsEvaluation of clinical pathological specimens confirmed that PD-L1 mRNA levels are associated with CD8+ T cell infiltration and better prognosis. miR-15b-5p was found to downregulate the expression of PD-L1 at the protein level, inhibit tumorigenesis and enhance anti-PD-1 sensitivity in CAC and APCmin/+ CRC models. IL-17A led to high PD-L1 expression in CRC cells through regulating the P65/NRF1/miR-15b-5p axis. Combined IL-17A and PD-1 blockade had efficacy in CT26 and MC38 tumors, with more cytotoxic T lymphocytes cells and fewer myeloid-derived suppressor cells in tumors.ConclusionsIL-17A increases PD-L1 expression through the p65/NRF1/miR-15b-5p axis and promotes resistance to anti-PD-1 therapy. Blocking IL-17A improved the efficacy of anti-PD-1 therapy in MSS CRC murine models. IL-17A might serve as a therapeutic target to sensitize patients with MSS CRC to ICI therapy.
Long intergenic non-coding RNAs (lincRNAs) associated with a number of cancers and other diseases have been identified in mammals, but they are still formidable to be comprehensively identified and characterized. Marek’s disease (MD) is a T cell lymphoma of chickens induced by Marek’s disease virus (MDV). Here, we used a MD chicken model to develop a precise pipeline for identifying lincRNAs and to determine the roles of lincRNAs in T cell tumorigenesis. More than 1,000 lincRNA loci were identified in chicken bursa. Computational analyses demonstrated that lincRNAs are conserved among different species such as human, mouse and chicken. The putative lincRNAs were found to be associated with a wide range of biological functions including immune responses. Interestingly, we observed distinct lincRNA expression signatures in bursa between MD resistant and susceptible lines of chickens. One of the candidate lincRNAs, termed linc-satb1, was found to play a crucial role in MD immune response by regulating a nearby protein-coding gene SATB1. Thus, our results manifested that lincRNAs may exert considerable influence on MDV-induced T cell tumorigenesis and provide a rich resource for hypothesis-driven functional studies to reveal genetic mechanisms underlying susceptibility to tumorigenesis.
Drug resistance, which is closely correlated with an imbalance in apoptosis, endows colorectal cancer (CRC) with enhanced progression capacity irrespective of the treatment with therapeutics. We report that miR-15b-5p is a tumor suppressor whose level is globally decreased in CRC cells and tissues. Over-expression of miR-15b-5p not only promoted 5-fluorouracil (5-FU)-induced cellular apoptosis but also reversed the chemoresistance of 5-FU in vitro and in vivo. As a key mediator of inflammation-induced cancer, miR-15b-5p enhances these therapeutic effects are mainly attributed to targeting of the NF-κB signaling pathway through negative regulation of NF-κB1 and one of its kinase complexes IKK-α. miR-15b-5p mediates NF-ĸB regulation by targeting the anti-apoptosis protein XIAP in vitro. Together, these results establish an axis of miR-15b-mediated apoptosis regulation, which reverses chemoresistance and suppresses CRC progression. These findings suggest that miR-15b-5p may be a potential agent for CRC treatment, particularly for 5-FU-resistant CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.