The effect of mainstream velocity and mainstream temperature on the behavior of deposition on a flat plate surface has been investigated experimentally. Molten wax particles were injected to generate particle deposition in a two-phase flow wind tunnel. Tests indicated that deposition occurs mainly at the leading edge and the middle and backward portions of the windward side. The mass of deposition at the leading edge was far more than that on the windward and lee sides. For the windward and lee sides, deposition mass increased as the mainstream velocity was increased for a given particle concentration. Capture efficiency was found to increase initially until the mainstream velocity reaches a certain value, where it begins to drop with mainstream velocity increasing. For the leading edge, capture efficiency followed a similar trend due to deposition spallation and detachment induced by aerodynamic shear at high velocity. Deposition formation was also strongly affected by the mainstream temperature due to its control of particle phase (solid or liquid). Capture efficiency initially increased with increasing mainstream temperature until a certain threshold temperature (near the wax melting point). Subsequently, it began to decrease, for wax detaches from the model surface when subjected to the aerodynamic force at the surface temperature above the wax melting point.
Particle deposition could decrease the aerodynamic performance and cooling efficiency of turbine vanes and blades. The particle motion in the flow and its temperature are two important factors affecting its deposition. The size of the particle influences both its motion and temperature. In this study, the motion of particles with the sizes from 1 to 20 μm in the first stage of a turbine are firstly numerically simulated with the steady method, then the particle deposition on the vanes and blades are numerically simulated with the unsteady method based on the critical viscosity model. It is discovered that the particle deposition on vanes mainly formed near the leading and trailing edge on the pressure surface, and the deposition area expands slowly to the whole pressure surface with the particle size increasing. For the particle deposition on blades, the deposition area moves from the entire pressure surface toward the tip with the particle size increasing due to the effect of rotation. For vanes, the particle capture efficiency increases with the particle size increasing since Stokes number and temperature of the particle both increase with its size. For blades, the particle capture efficiency increases firstly and then decreases with the particle size increasing.
Particle deposition tests were conducted in a turbine deposition facility with an internally staged single-tube combustor to investigate the individual effect of the gas temperature and angle of attack. Sand particles were seeded to the combustor and deposited on a turbine blade with film-cooling holes at temperatures representative of modern engines. Fuel-air ratios were varied from 0.022 to 0.037 to achieve a gas temperature between 1272 and 1668 K. Results show that capture efficiency increased with increasing gas temperature. A dramatic increase in capture efficiency was noted when gas temperature exceeded the threshold. The deposition formed mostly downstream of the film-cooling holes on the pressure surface, while it concentrated on the suction surface at the trailing edge. Deposition tests at angles of attack between 10° and 40° presented changes in both deposition mass and distribution. The capture efficiency increased with the increase in the angle of attack, and simultaneously the growth rate slowed down. On the blade pressure surface, sand deposition was distributed mainly downstream of the film-cooling holes near the trailing edge in the case of the small angle of attack, while it concentrated on the region around the film-cooling holes near the leading edge, resulting in the partial blockage of holes, in the case of the large angle of attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.