Laser diffraction (LD) has many obvious advantages for measuring. However, the measurement accuracy is limited by a number of factors, such as imaging noise, sensor threshold, and fitting methods. In this paper, we present a novel method for measuring filament diameter based on image-based fitting, which maintains more information. Before fitting the diffraction image, image processing is applied to solve the problem of image noise and the non-linear response of the charge-coupled device (CCD). Then, a fitting formula is established based on the distribution of laser intensity on a diffraction image, and the fitted results are solved with the Levenberg–Marquardt (LM) algorithm. Finally, the initial parameters of a fit are obtained by calculation, which speeds up the calculation and improves the accuracy of the fitting. The measurement accuracy of this method is verified by experimental and theoretical analysis. In experiments, the filament diameters of 125 and 125.2 μm are measured with a relative error of approximately 0.12%, Furthermore, the superiority of this method is demonstrated by comparing the measurements with other methods. To verify the stability of the measurements, filament diameters of 110–180 μm are chosen to be measured with a relative standard deviation of less than 0.14%.
Atom gravimeters use locked lasers to manipulate atoms to achieve high-precision gravity measurements. Frequency modulation spectroscopy (FMS) is an accurate method of optical heterodyne spectroscopy, capable of the sensitive and rapid frequency locking of the laser. Because of the effective absorption coefficient, Doppler broadening and susceptibility depend on temperature, and the signal-to-noise ratio (SNR) of the spectroscopy could be affected by temperature. We present a detailed study of the influence of the temperature on FMS in atom gravimeters, and the experimental results show that the SNR of the spectroscopy is dependent on temperature. In this paper, the frequency of the reference laser is locked by tracking the set point of the fringe slope of FMS. The influence of the frequency-locking noise of the reference laser on the sensitivity of the atom gravimeter is investigated by changing the temperature of the Rb cell without extra operations. The method presented here could be useful for improving the sensitivity of quantum sensors that require laser spectroscopic techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.