Inspired by the emissive features of Zn complexes based on bis-Schiff base ligands, bis-Zn salphen complexes bearing pyridyl functionalized ligands have been successfully synthesized. Their photophysical features, electrochemical behavior and electroluminescent (EL) properties have been investigated in detail. The functionalized bis-Zn salphen complexes can exhibit high thermal stability up to 417 °C, and their photoluminescence (PL) spectra show a maximal emission wavelength peak at ca. 565 nm both in solution and PMMA doped films. The PL investigation of the neat films for these functionalized bis-Zn salphen complexes indicated that the pyridyl functionalized ligands can effectively reduce the degree of molecular aggregation to enhance their emission intensity. Taking advantage of the charge carrier injection/transporting ability of the pyridyl functionalized ligands and their dendritic design, the optimized EL devices fabricated by a simple solution-processing method can achieve a peak luminance (L) of 3589 cd m, a maximal external quantum efficiency (η) of 1.46%, a maximal current efficiency (η) of 4.1 cd A and a maximal power efficiency (η) of 3.8 lm W. These results should afford important instructions for exploiting high performance fluorescent emitters based on dinuclear Zn complexes.
A high triplet energy level (E) of ca. 2.83 eV has been achieved in a novel polymer backbone through tuning the arrangement of two kinds of building blocks, showing enhanced hole injection/transporting capacity. Based on this new polymer backbone with high E, both blue and white phosphorescent polymers were successfully developed with a trade-off between high E and enhanced charge-carrier transporting ability. In addition, their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. Benefitting from the advantages associated with the novel polymer backbone, the blue phosphorescent polymers show top-ranking EL performances with a maximum luminance efficiency (η) of 15.22 cd A, corresponding to a power efficiency (η) of 12.64 lm W, and external quantum efficiency (η) of 6.22% and the stable Commission Internationale de L'Eclairage (CIE) coordinates of (0.19, 0.38). Furthermore, blue-orange (B-O) complementary-colored white phosphorescent polymers based on this novel polymer backbone were also obtained showing encouraging EL efficiencies of 12.34 cd A, 9.59 lm W, and 4.10% in the optimized WOLED together with exceptionally stable CIE coordinates of (Δx = 0.014, Δy = 0.010) in a wide driving voltage range from 4 to 16 V. All of these attractive EL results achieved by these novel phosphorescent polymers show the great potential of this new polymer backbone in developing highly efficient phosphorescent polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.