To exploit the potential application of supporting nonlinearity in marine engineering, an attempt is made to establish the transverse forced vibration analysis model of a double-beam system supported by a spring-mass system that is nonlinear. This kind of vibration system consists of two beam sections, boundary supports, a coupling component, and a nonlinear spring-mass arrangement. The variational approach and the generalized Hamiltonian concept are used to develop the governing equations of such a double-beam system. The Galerkin truncation method (GTM) is a technique for obtaining the governing equations’ residual equations. By solving the associated residual equations numerically, the nonlinear responses of the double-beam system can be figured out. The GTM has good solidity and correctness in the prediction of the vibration system’s forced transverse vibration. The dynamic responses of the double-beam structure supported by a spring-mass system that is nonlinear are subtle to their initial calculation values. Appropriate parameters of the nonlinear support will subdue the level of vibration at the boundary of the double-beam system. In contrast, unsuitable parameters of the nonlinear support motivate complex dynamic responses of the double-beam system and harmfully influence the vibration repression at the boundary of the vibration system.
The large-area flexible surface of bionic loach scale was prepared by template method, and the bionic scales of Paramisgurnus dabryanus showed have a brilliant drag reduction performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.