Though deep learning has shown successful performance in classifying the label and severity stage of certain disease, most of them give few evidence on how to make prediction. Here, we propose to exploit the interpretability of deep learning application in medical diagnosis. Inspired by Koch's Postulates, a well-known strategy in medical research to identify the property of pathogen, we define a pathological descriptor that can be extracted from the activated neurons of a diabetic retinopathy detector. To visualize the symptom and feature encoded in this descriptor, we propose a GAN based method to synthesize pathological retinal image given the descriptor and a binary vessel segmentation. Besides, with this descriptor, we can arbitrarily manipulate the position and quantity of lesions. As verified by a panel of 5 licensed ophthalmologists, our synthesized images carry the symptoms that are directly related to diabetic retinopathy diagnosis. The panel survey also shows that our generated images is both qualitatively and quantitatively superior to existing methods.
The current industry practice for 24-hour outdoor imaging is to use a silicon camera supplemented with near-infrared (NIR) illumination. This will result in color images with poor contrast at daytime and absence of chrominance at nighttime. For this dilemma, all existing solutions try to capture RGB and NIR images separately. However, they need additional hardware support and suffer from various drawbacks, including short service life, high price, specific usage scenario, etc. In this paper, we propose a novel and integrated enhancement solution that produces clear color images, whether at abundant sunlight daytime or extremely low-light nighttime. Our key idea is to separate the VIS and NIR information from mixed signals, and enhance the VIS signal adaptively with the NIR signal as assistance. To this end, we build an optical system to collect a new VIS-NIR-MIX dataset and present a physically meaningful image processing algorithm based on CNN. Extensive experiments show outstanding results, which demonstrate the effectiveness of our solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.