Osteoarthritis (OA) is a widespread joint disease for which there are no disease-modifying treatments. Previously, we found that mice with cartilage-specific epidermal growth factor receptor (EGFR) deficiency developed accelerated knee OA. To test whether the EGFR pathway can be targeted as a potential OA therapy, we constructed two cartilage-specific EGFR overactivation models in mice by overexpressing heparin binding EGF-like growth factor (HBEGF), an EGFR ligand. Compared to wild type, Col2-Cre HBEGF-overexpressing mice had persistently enlarged articular cartilage from adolescence, due to an expanded pool of chondroprogenitors with elevated proliferation ability, survival rate, and lubricant production. Adult Col2-Cre HBEGF-overexpressing mice and Aggrecan-CreER HBEGF-overexpressing mice were resistant to cartilage degeneration and other signs of OA after surgical destabilization of the medial meniscus (DMM). Treating mice with gefitinib, an EGFR inhibitor, abolished the protective action against OA in HBEGF-overexpressing mice. Polymeric micellar nanoparticles (NPs) conjugated with transforming growth factor–α (TGFα), a potent EGFR ligand, were stable and nontoxic and had long joint retention, high cartilage uptake, and penetration capabilities. Intra-articular delivery of TGFα-NPs effectively attenuated surgery-induced OA cartilage degeneration, subchondral bone plate sclerosis, and joint pain. Genetic or pharmacologic activation of EGFR revealed no obvious side effects in knee joints and major vital organs in mice. Together, our studies demonstrate the feasibility of using nanotechnology to target EGFR signaling for OA treatment.
Botulinum neurotoxin B is a Food and Drug Administration-approved therapeutic toxin. However, it has lower binding affinity toward the human version of its major receptor, synaptotagmin II (h-Syt II), compared to mouse Syt II, because of a residue difference. Increasing the binding affinity to h-Syt II may improve botulinum neurotoxin B’s therapeutic efficacy and reduce adverse effects. Here we utilized the bacterial adenylate cyclase two-hybrid method and carried out a saturation mutagenesis screen in the Syt II-binding pocket of botulinum neurotoxin B. The screen identifies E1191 as a key residue: replacing it with M/C/V/Q enhances botulinum neurotoxin B binding to human synaptotagmin II. Adding S1199Y/W or W1178Q as a secondary mutation further increases binding affinity. Mutant botulinum neurotoxin B containing E1191M/S1199Y exhibits ~11-fold higher efficacy in blocking neurotransmission than wild-type botulinum neurotoxin B in neurons expressing human synaptotagmin II, demonstrating that enhancing receptor binding increases the overall efficacy at functional levels. The engineered botulinum neurotoxin B provides a platform to develop therapeutic toxins with improved efficacy.
Affinity proteins binding to antibody constant regions have proved to be invaluable tools in biotechnology. Here, protein engineering was used to expand the repertoire of available immunoglobulin binding proteins via improvement of the binding strength between the widely used staphylococcal protein A-derived Z domain and the important immunoglobulin isotype mouse IgG1 (mIgG1). Addressing seven positions in the 58-residue three-helix bundle Z domain by single or double amino acid substitutions, a total of 170 variants were individually constructed, produced in E. coli and tested for binding to a set of mouse IgG1 monoclonal antibodies (mAbs). The best variant, denoted ZF5I corresponding to a Phe to Ile substitution at position 5, showed a typical ten-fold higher affinity than the wild-type as determined by biosensor technology. Eight amino acid positions in the ZF5I variant were separately mutated to cysteine for incorporation of a photoactivable maleimide-benzophenone (MBP) group as a probe for site-specific photoconjugation to Fc of mIgG1, The best photocoupling efficiency to mIgG1 Fc was seen when the MBP group was coupled to Cys at position 32, resulting in adduct formation to more than 60% of all heavy chains, with no observable non-selective conjugation to the light chains. A similar coupling yield was obtained for a panel of 19 different mIgG1 mAbs, indicating a general characteristic. To exemplify functionalization of a mIgG1 antibody via site-specific biotinylation, the ZF5I-Q32C-MBP protein was first biotinylated using an amine reactive reagent and subsequently photoconjugated to an anti-human interferon-gamma mIgG1 mAb. When comparing the specific antigen binding ability of the probe-biotinylated mAb to that of the directly biotinylated mAb, a significantly higher bioactivity was observed for the sample biotinylated using the ZF5I-Q32C-MBP probe. This result indicates that the use of a site-specific and affinity probe-mediated conjugation strategy can result in antibody reagents with increased assay sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.