In the laser shock peening process of titanium alloy thin blades, a shock wave will be repeatedly reflected and coupled in the blades, resulting in the failure of the formation of a gradient residual compressive stress layer, which is the key to improve fatigue performance and resist foreign object impact. This paper takes TC17 titanium alloy sheet as the research object to reveal the influence mechanism on residual stress-strain profile of shock wave reflection-coupling by shock wave propagation and key position dynamic response. Based on the result of influence mechanism, two wave transmission methods are proposed to regulate shock wave in order to reduce the intensity of shock wave reflection. The analysis shows that the high strength stress be formed when the shock wave is reflected and coupled in the sheet, which causes the re-plastic deformation and the decrease of transverse plastic strain. This eventually leads to residual tensile stress up to 410 MPa being formed within a 0.5 mm radial direction and 0.3 mm deep of the spot range. The use of "soft" and "hard" wave-transmitting layers greatly reduces the shock wave reflection intensity, and under the condition of the "hard" wave-transmitting layer, a better impedance matching is achieved, resulting in a residual compressive stress of about 400 MPa.
Laser shock peening (LSP) can induce the compressive residual stress (CRS) on the surface of the material, and surface nanocrystallization can be realized with a nanocrystal layer, thereby significantly improving the high-cycle fatigue performance. However, due to weak material constrain and the high working temperature of thin aero-engine compressor blades, CRS and refined grain structure are more likely to result in stress relaxation and microstructural recovery under thermal stress load, resulting in reducing the anti-fatigue effect of LSP. In this paper, on the basis of the surface nanocrystallization induced by LSP, residual stress and microstructure of TC11 titanium alloy thin components were measured and observed. The residual stress relaxation was characterized and the microstructure evolution was discussed. Also, the thermal stability mechanism of CRS and the nanostructure on the surface were analyzed. The experimental results show that after thermal loads, the CRS was decreased, and the stress relaxation amplitude was increased with an increase in temperature. After annealing at 400 °C, the dislocation density was significantly reduced, but the grain sizes of surface nanostructure did not greatly increase. After annealing at 400 °C for 2 h, the fatigue strength of the LSPed specimen was reduced compared with that before annealing, but it was still increased compared with the original state without LSP, especially under high-power density for multiple LSP treatment. It can be concluded that the surface nanostructure has good stability and effectively retards the initiation of fatigue cracks on the surface, which ensures the effectiveness of LSP under thermal loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.