With the growing popularity of electrical communication equipment, high-performance electromagnetic interference (EMI) shielding materials are widely used to deal with radiation pollution. However, the large thickness and poor mechanical properties of many EMI shielding materials usually limit their applications. In this study, ultrathin and highly flexible TiCT (d-TiCT , MXene)/cellulose nanofiber (CNF) composite paper with a nacre-like lamellar structure is fabricated via a vacuum-filtration-induced self-assembly process. By the interaction between one-dimensional (1D) CNFs and two-dimensional (2D) d-TiCT MXene, the binary strengthening and toughening of the nacre-like d-TiCT /CNF composite paper has been successfully achieved, leading to high tensile strength (up to 135.4 MPa) and fracture strain (up to 16.7%), as well as excellent folding endurance (up to 14 260 times). Moreover, the d-TiCT /CNF composite paper exhibits high electrical conductivity (up to 739.4 S m) and excellent specific EMI shielding efficiency (up to 2647 dB cm g) at an ultrathin thickness (minimum thickness 47 μm). The nacre-inspired strategy in this study offers a promising approach for the design and preparation of the strong integrated and flexible MXene/CNF composite paper, which may be applied in various fields such as flexible wearable devices, weapon equipment, and robot joints.
Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp). Mice lacking antibodies (JH
−/−) or activating Fc receptors (FcRγ−/−) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.