Dietary restriction (DR) reduces age-specific mortality and increases lifespan in many organisms. DR elicits a large number of physiological changes, however many are undoubtedly not related to longevity. Whole-genome gene expression studies have typically revealed hundreds to thousands of differentially expressed genes in response to DR, and a key open question is which subset of genes mediates longevity. Here we performed transcriptional profiling of fruit flies in a closely spaced time series immediately following a switch to the DR regime and identified four patterns of transcriptional dynamics. Most informatively we find 144 genes rapidly switched to the same level observed in the DR cohort and are hence strong candidates as proximal mediators of reduced mortality upon DR. This class was enriched for genes involved in carbohydrate and fatty acid metabolism. Folate biosynthesis was the only pathway enriched for gene up-regulated upon DR. Four among the down-regulated genes are involved in key regulatory steps within the pentose phosphate pathway, which has been previously associated with lifespan extension in Drosophila. Combined analysis of dietary switch with whole-genome time-course profiling can identify transcriptional responses that are closely associated with and perhaps causal to longevity assurance conferred by dietary restriction.
Background: Coronary artery disease (CAD) is the leading cause of death worldwide, which has a long asymptomatic period of atherosclerosis. Thus, it is crucial to develop efficient strategies or biomarkers to assess the risk of CAD in asymptomatic individuals.Methods: A total of 356 consecutive CAD patients and 164 non-CAD controls diagnosed using coronary angiography were recruited. Blood lipids, other baseline characteristics, and clinical information were investigated in this study. In addition, low-density lipoprotein cholesterol (LDL-C) subfractions were classified and quantified using the Lipoprint system. Based on these data, we performed comprehensive analyses to investigate the risk factors for CAD development and to predict CAD risk.Results: Triglyceride, LDLC-3, LDLC-4, LDLC-5, LDLC-6, and total small and dense LDL-C were significantly higher in the CAD patients than those in the controls, whereas LDLC-1 and high-density lipoprotein cholesterol (HDL-C) had significantly lower levels in the CAD patients. Logistic regression analysis identified male [odds ratio (OR) = 2.875, P < 0.001], older age (OR = 1.018, P = 0.025), BMI (OR = 1.157, P < 0.001), smoking (OR = 4.554, P < 0.001), drinking (OR = 2.128, P < 0.016), hypertension (OR = 4.453, P < 0.001), and diabetes mellitus (OR = 8.776, P < 0.001) as clinical risk factors for CAD development. Among blood lipids, LDLC-3 (OR = 1.565, P < 0.001), LDLC-4 (OR = 3.566, P < 0.001), and LDLC-5 (OR = 6.866, P < 0.001) were identified as risk factors. To predict CAD risk, six machine learning models were constructed. The XGboost model showed the highest AUC score (0.945121), which could distinguish CAD patients from the controls with a high accuracy. LDLC-4 played the most important role in model construction.Conclusions: The established models showed good performance for CAD risk prediction, which can help screen high-risk CAD patients in asymptomatic population, so that further examination and prevention treatment might be taken before any sudden or serious event.
Dietary restriction (DR) extends lifespan in a wide variety of organisms. Although several genes and pathways associated with this longevity response have been identified, the specific mechanism through which DR extends lifespan is not fully understood. We have recently developed a novel methodology to screen for transcriptional changes in response to acutely imposed DR upon adult Drosophila melanogaster and identified groups of genes that switch their transcriptional patterns from a normal diet pattern to a restricted diet pattern, or ‘switching genes’. In this current report we extend our transcriptional data analysis with Gene Set Enrichment Analysis to generate a pathway-centered perspective. The pattern of temporal behavior in response to the diet switch is strikingly similar within and across pathways associated with mRNA processing and protein translation. Furthermore, most genes within these pathways display an initial spike in activity within 6 to 8 hours from the diet switch, followed by a coordinated, partial down-regulation after 24 hours. We propose this represents a stereotypical response to DR, which ultimately leads to a mild but widespread inhibition of transcriptional and translational activity. Inhibition of the protein synthesis pathway has been observed in DR in other studies and has been shown to extend lifespan in several model organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.