Although the current ecological engineering technology can reinforce shallow landslides, it cannot reinforce deep landslides. A new type of ecological engineering technology-living tree stump slope protection was developed, aiming at the deficiency of current ecological engineering technology. For living stumps with different tap root lengths, the mechanical properties of the living stump slope and root system were analyzed. The model was based on the finite element method, using the Mohr-Coulomb failure criterion to consider the mechanical plasticity of the soil. The three-dimensional (3D) models of living stumps with different tap root lengths were simulated by embedded beam elements. Changes in stress and strain of soil and root system were simulated. The strength reduction method was used here to calculate the safety factor of the slope. The results showed that long taproots moved the soil shear stress area to deeper soil layers, increasing the stability of the slope. The root system in the middle and lower part of the slope mainly exerted its tensile strength and played a positive role in the stability of the slope. The longer the taproots, the more stable the slope. Slope stability may be affected by root length, spatial root morphology, and the spatial layout of the root system on the slope. Planting living stumps in the middle and lower part of the slope densely was recommended in ecological engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.