This paper proposes an iterative algorithm to solve the inverse displacement for a hyper-redundant elephant’s trunk robot (HRETR). In this algorithm, each parallel module is regarded as a geometric line segment and point model. According to the forward approximation and inverse pose adjustment principles, the iteration process can be divided into forward and backward iteration. This iterative algorithm transforms the inverse displacement problem of the HRETR into the parallel module’s inverse displacement problem. Considering the mechanical joint constraints, multiple iterations are carried out to ensure that the robot satisfies the required position error. Simulation results show that the algorithm is effective in solving the inverse displacement problem of HRETR.
This paper develops the conceptual design and error analysis of a cable-driven parallel robot (CDPR). The earlier error analysis of CDPRs generally regarded the cable around the pulley as a center point and neglected the radius of the pulleys. In this paper, the conceptual design of a CDPR with pulleys on its base platform is performed, and an error mapping model considering the influence of radius of the pulleys for the CDPR is established through kinematics analysis and a full matrix complete differential method. Monte Carlo simulation is adopted to deal with the sensitivity analysis, which can directly describe the contribution of each error component to the total orientation error of the CDPR by virtue of the error modeling. The results show that the sensitivity coefficients of pulleys’ geometric errors and geometric errors of the cables are relatively larger, which confirms that the cable length errors and pulleys’ geometric errors should be given higher priority in design and processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.