In this paper, motivated by the works of Bakry et. al in finding sharp Li-Yau type gradient estimate for positive solutions of the heat equation on complete Riemannian manifolds with nonzero Ricci curvature lower bound, we first introduce a general form of Li-Yau type gradient estimate and show that the validity of such an estimate for any positive solutions of the heat equation reduces to the validity of the estimate for the heat kernel of the Riemannian manifold. Then, a sharp Li-Yau type gradient estimate on the three dimensional hyperbolic space is obtained by using the explicit expression of the heat kernel and some optimal Li-Yau type gradient estimates on general hyperbolic spaces are obtained.2010 Mathematics Subject Classification. Primary 35K05; Secondary 53C44.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.