In the field of quantum control, effective Hamiltonian engineering is a powerful tool that utilizes perturbation theory to mitigate or enhance the effect that a variation in the Hamiltonian has on the evolution of the system. Here, we provide a general framework for computing arbitrary timedependent perturbation theory terms, as well as their gradients with respect to control variations, enabling the use of gradient methods for optimizing these terms. In particular, we show that effective Hamiltonian engineering is an instance of a bilinear control problem-the same general problem class as that of standard unitary design-and hence the same optimization algorithms apply. We demonstrate this method in various examples, including decoupling, recoupling, and robustness to control errors and stochastic errors. We also present a control engineering example that was used in experiment, demonstrating the practical feasibility of this approach.
It is well known that quantum computers are superior to classical computers in efficiently simulating quantum systems. Here we report the first experimental simulation of quantum tunneling through potential barriers, a widespread phenomenon of a unique quantum nature, via NMR techniques. Our experiment is based on a digital particle simulation algorithm and requires very few spin-1/2 nuclei without the need of ancillary qubits. The occurrence of quantum tunneling through a barrier, together with the oscillation of the state in potential wells, are clearly observed through the experimental results. This experiment has clearly demonstrated the possibility to observe and study profound physical phenomena within even the reach of small quantum computers.
The gradient descent method is central to numerical optimization and is the key ingredient in many machine learning algorithms. It promises to find a local minimum of a function by iteratively moving along the direction of the steepest descent. Since for high-dimensional problems the required computational resources can be prohibitive, it is desirable to investigate quantum versions of the gradient descent, such as the recently proposed (Rebentrost et al.1). Here, we develop this protocol and implement it on a quantum processor with limited resources. A prototypical experiment is shown with a four-qubit nuclear magnetic resonance quantum processor, which demonstrates the iterative optimization process. Experimentally, the final point converged to the local minimum with a fidelity >94%, quantified via full-state tomography. Moreover, our method can be employed to a multidimensional scaling problem, showing the potential to outperform its classical counterparts. Considering the ongoing efforts in quantum information and data science, our work may provide a faster approach to solving high-dimensional optimization problems and a subroutine for future practical quantum computers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.