Dynamic influence maximization problem (DIMP) aims to maintain a group of influential users within an evolving social network, so that the influence scope can be maximized at any given moment. A primary category of DIMP algorithms focuses on the renewal of reverse reachable (RR) sets, which is designed for static social network scenarios, to accelerate the estimation of influence spread. And the generation time of RR sets plays a crucial role in algorithm efficiency. However, their update approaches require sequential updates for each edge change, leading to considerable computational cost. In this paper, we propose a strategy for batch updating the changes in network edge weights to efficiently maintain RR sets. By calculating the probability that previous RR sets can be regenerated at the current moment, we retain those with a high probability. This method can effectively avoid the computational cost associated with updating and sampling these RR sets. Besides, we propose an resampling strategy that generates high-probability RR sets to make the final distribution of RR sets approximate to the sampling probability distribution under the current social network. The experimental results indicate that our strategy is both scalable and efficient. On the one hand, compared to the previous update strategies, the running time of our strategy is insensitive to the number of changes in network weight; on the other hand, for various RR set-based algorithms, our strategy can reduce the running time while maintaining the solution quality that is essentially consistent with the static algorithms.
Numerical analysis software based on linear finnite element method and statistical damage theory concrete material has been adopted in this study. Dynamic numerical model of twin fibers pullout test of concrete matrix have been created by considering the meso-heterogeneity of concrete material. The whole process from micro-cracks initiation, propagation to crack penetration has been simulated. The influence of stress wave loading peak and loading rate on twin fibers pull-out test of concrete matrix under dynamic load has, therefore, been scrutinized. Results show that loading rate has effect on failure mode and crack propagation along interface of the twin fibers pull-out specimens. With increasing loading rates, the rate of interface crack propagation and damage area increase either.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.