PurposeTo construct a sequence diagram based on radiological and clinical factors for the evaluation of extrathyroidal extension (ETE) in patients with papillary thyroid carcinoma (PTC).Materials and MethodsBetween January 2016 and January 2020, 161 patients with PTC who underwent preoperative ultrasound examination in the Affiliated People’s Hospital of Jiangsu University were enrolled in this retrospective study. According to the pathology results, the enrolled patients were divided into a non-ETE group and an ETE group. All patients were randomly divided into a training cohort (n = 97) and a validation cohort (n = 64). A total of 479 image features of lesion areas in ultrasonic images were extracted. The radiomic signature was developed using least absolute shrinkage and selection operator algorithms after feature selection using the minimum redundancy maximum relevance method. The radiomic nomogram model was established by multivariable logistic regression analysis based on the radiomic signature and clinical risk factors. The discrimination, calibration, and clinical usefulness of the nomogram model were evaluated in the training and validation cohorts.ResultsThe radiomic signature consisted of six radiomic features determined in ultrasound images. The radiomic nomogram included the parameters tumor location, radiological ETE diagnosis, and the radiomic signature. Area under the curve (AUC) values confirmed good discrimination of this nomogram in the training cohort [AUC, 0.837; 95% confidence interval (CI), 0.756–0.919] and the validation cohort (AUC, 0.824; 95% CI, 0.723–0.925). The decision curve analysis showed that the radiomic nomogram has good clinical application value.ConclusionThe newly developed radiomic nomogram model is a noninvasive and reliable tool with high accuracy to predict ETE in patients with PTC.
BRAFV600E is the most common mutated gene in thyroid cancer and is most closely related to papillary thyroid carcinoma(PTC). We investigated the value of elasticity and grayscale ultrasonography for predicting BRAFV600E mutations in PTC.Methods138 patients with PTC who underwent preoperative ultrasound between January 2014 and 2021 were retrospectively examined. Patients were divided into BRAFV600E mutation-free group (n=75) and BRAFV600E mutation group (n=63). Patients were randomly divided into training (n=96) and test (n=42) groups. A total of 479 radiomic features were extracted from the grayscale and elasticity ultra-sonograms. Regression analysis was done to select the features that provided the most information. Then, 10-fold cross-validation was used to compare the performance of different classification algorithms. Logistic regression was used to predict BRAFV600E mutations.ResultsEight radiomics features were extracted from the grayscale ultrasonogram, and five radiomics features were extracted from the elasticity ultrasonogram. Three models were developed using these radiomic features. The models were derived from elasticity ultrasound, grayscale ultrasound, and a combination of grayscale and elasticity ultrasound, with areas under the curve (AUC) 0.952 [95% confidence interval (CI), 0.914−0.990], AUC 0.792 [95% CI, 0.703−0.882], and AUC 0.985 [95% CI, 0.965−1.000] in the training dataset, AUC 0.931 [95% CI, 0.841−1.000], AUC 0. 725 [95% CI, 0.569−0.880], and AUC 0.938 [95% CI, 0.851−1.000] in the test dataset, respectively.ConclusionThe radiomic model based on grayscale and elasticity ultrasound had a good predictive value for BRAFV600E gene mutations in patients with PTC.
Thyroid nodules are commonly encountered in health care practice. They are usually benign in nature, with few cases being malignant, and their detection has increased in the adult population with the help of ultrasonography. Thyroidectomy or surgery is the first-line treatment and traditional method for thyroid nodules; however, thyroidectomy leaves permanent scars and requires long-term use of levothyroxine after surgery, which makes patients more reticent to accept this treatment. Thermal ablation is a minimally-invasive technique that have been employed in the treatment of benign and malignant thyroid nodules nodules, and have been shown to be effective and safe. Several studies, including long-term, retrospective, and prospective studies, have investigated the use of ablation to treat benign thyroid nodules and malignant thyroid nodules, including papillary thyroid carcinoma. Here, we review the recent progress in thermal ablation techniques for treating benign and malignant nodules, including their technicalities, clinical applications, pitfalls and limitations, and factors that could affect treatment outcomes. Special in-depth elaboration on the recent progress of the application of thermal ablation therapy in malignant thyroid nodules.
Background The diffuse sclerosing variant of papillary thyroid carcinoma (DSV‐PTC) has ultrasound findings that are similar to Hashimoto's thyroiditis (HT), resulting in under‐diagnosis. DSV‐PTC combined with HT is also common, so early and accurate diagnosis of DSV‐PTC using a variety of diagnostic techniques, including FNAC, BRAFV600E mutation detection, and ultrasound elastography, is critical. Objective To assess the diagnostic value of fine‐needle aspiration cytology (FNAC) and BRAFV600E detection in combination with ultrasound elastography in the diagnosis of DSV‐PTC. Methods We performed a retrospective analysis of 40 patients with pathologically confirmed DSV‐PTC and 43 patients with HT admitted to our hospital's ultrasound department between January 2015 and December 2020. Preoperative FNAC, BRAFV600E mutation detection, and ultrasound elastography imaging were all performed on all patients. For a definitive diagnosis, the results of these tests were compared to postoperative pathological findings. The diagnostic value of FNAC, BRAFV600E mutation detection, ultrasound elasticity imaging, and their combination for DSV‐PTC diagnosis was assessed. Results The mean elastic strain rate ratio (E1/E2) of the 40 DSV‐PTC cases was 5.75 ± 2.14, while that of the 43 HT cases was 2.81 ± 1.20. The receiver operating characteristic (ROC) curve was generated using the average value of E2/E1. The area under the ROC curve was 0.910, and the optimal E2/E1 cut‐off value was 4.500. When FNAC, BRAFV600E mutation detection, and ultrasound elasticity imaging detection were combined, the diagnostic sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of DSV‐PTC diagnosis were 92.5%, 95.3%, 93.2%, 94.9%, and 94.0%, respectively, which were significantly higher than the single technique (p < 0.05). Conclusions The use of FNAC, BRAFV600E mutation detection, and ultrasound elastography in combination is more helpful in establishing an accurate diagnosis of DSV‐PTC than using a single diagnostic technique alone.
Mutations in the B-Raf proto-oncogene, serine/threonine kinase (BRAF), have been linked to a variety of solid tumors such as papillary thyroid carcinoma. The purpose of this study was to compare the DP-TOF, a DNA mass spectroscopy (MS) platform, and next-generation sequencing (NGS) methods for detecting multiple-gene mutations (including BRAFV600E) in thyroid nodule fine-needle aspiration fluid. In this study, we collected samples from 93 patients who had previously undergone NGS detection and had sufficient DNA samples remaining. The MS method was used to detect multiple-gene mutations (including BRAFV600E) in DNA remaining samples. NGS detection method was used as the standard. The MS method’s overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 95.8%, 100%, 100%, and 88%, respectively in BRAFV600E gene mutation detection. With a kappa-value of 0.92 (95%CI 0.82–0.99), the level of agreement between these methods was incredibly high. Furthermore, when compared to NGS in multiple-gene detection, the MS method demonstrated higher sensitivity and specificity, 82.9% and 100%, respectively. In addition, we collected the postoperative pathological findings of 50 patients. When the postoperative pathological findings were used as the standard, the MS method demonstrated higher sensitivity and specificity, at 80% and 80%, respectively. Our findings show that the MS method can be used as an inexpensive, accurate, and dependable initial screening method to detect genes mutations and as an adjunct to clinical diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.