letters to nature 498 NATURE | VOL 398 | 8 APRIL 1999 | www.nature.com to control the microenvironment of the nucleation site and to manipulate near-surface gradients of concentrations of the crystallizing ions by patterning SAMs into rapidly and slowly nucleating regions.The technique we report here gives us the ability to fabricate a large number of indistinguishable active nucleation regions, and to nucleate one crystal in each region. This should enable the study of fundamental aspects of the crystallization process by providing access to statistically signi®cant numbers of nucleation events in highly controlled microenvironments. M
Chiral molecules have asymmetric arrangements of atoms, forming structures that are non-superposable mirror images of each other. Specific mirror images ('enantiomers') may be obtained either from enantiomerically pure precursor compounds, through enantioselective synthesis, or by resolution of so-called racemic mixtures of opposite enantiomers, provided that racemization (the spontaneous interconversion of enantiomers) is sufficiently slow. Non-covalent assemblies can similarly adopt chiral supramolecular structures, and if they are held together by relatively strong interactions, such as metal coordination, methods analogous to those used to obtain chiral molecules yield enantiomerically pure non-covalent products. But the resolution of assemblies formed through weak interactions, such as hydrogen-bonding, remains challenging, reflecting their lower stability and significantly higher susceptibility to racemization. Here we report the design of supramolecular structures from achiral calix[4]arene dimelamines and cyanurates, which form multiple cooperative hydrogen bonds that together provide sufficient stability to allow the isolation of enantiomerically pure assemblies. Our design strategy is based on a non-covalent 'chiral memory' concept, whereby we first use chiral barbiturates to induce the supramolecular chirality in a hydrogen-bonded assembly, and then substitute them by achiral cyanurates. The stability of the resultant chiral assemblies in benzene, a non-polar solvent not competing for hydrogen bonds, is manifested by a half-life to racemization of more than four days at room temperature.
In this paper we describe model calculations for the self-assembly of N,N-disubstituted melamines 1 and N-substituted cyanuric acid or 5,5-disubstituted barbituric acid derivatives 2 into linear or crinkled tapes and cyclic rosettes via cooperative hydrogen bond formation. The model description considers all possible stereoisomeric tape structures consisting of two to eight different components (270 different species in total) and one cyclic hexameric rosette structure. Furthermore, eight steric parameters (R(12)-R(28)) are included that represent the different types of steric interactions within the assemblies. Most importantly, the model calculations clearly show that the tape/rosette ratio is very sensitive to changes in parameters that directly affect the internal energy of the rosette structure. In this respect, three parameters have been characterized, i.e., the basic equilibrium constant K(0) for the bimolecular association of a melamine and cyanurate, the equilibrium constant K(r)/K(0) for the cyclization of a linear hexamer, and the parameter R(12)-a(Z)b, representing attractive or repulsive interactions between adjacent melamine and cyanurate moieties. For example, an increase in K(0) from 100 to 10,000 M(-1) ([A](0) = [B](0) = 10 mM, K(r) = 0.01 M) or in K(r) from 0.001 to 0.1 M ([A](0) = [B](0) = 10 mM, K(0) = 1000 M(-1)) raises the concentration of the rosette from <5 to approximately 90% or from approximately 10 to approximately 85%, respectively. Similarly, a change in R(12)-a(Z)b from 1.0 (no repulsive or attractive interactions) to 1.5 (slight attractive interaction) raises the rosette fraction of the mixture from 25% to 45%. In sharp contrast to this, the model calculations show that parameters that only affect the internal energy of the tapes (R(13)--R(28)) hardly change the tape/rosette ratio. For example, by changing R(13)-a(EE)a from 1.0 (no repulsive or attractive interactions) to 0.001 (maximum repulsion), the rosette fraction in the mixture changes by no more than 8%. Including all possible sterics that occur only in tapes (i.e., R(13)--R(28)), the maximum change in rosette fraction is no more than 16%. These predictions can be rationalized by considering that any change in the stability of the tapes only affects the rosette concentration by means of shifting the equilibrium between free 1 and 2 and the rosette. Since there are 270 different tapelike structures in equilibrium, this mixture represents the best buffer solution in the world. These model calculations seem to conflict with the concept of peripheral crowding as put forward by Whitesides et al., which states that bulky substituents on the periphery of the melamine (and cyanurate) components can be used to shift the tape/rosette equilibrium completely toward the rosette structure. Computer simulations (CHARMm 24.0) show that linear tapes with bulky substituents are severely distorted from planarity, while the corresponding rosette remains planar. Therefore, tapelike structures with bulky substituents are expected to have a much h...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.