Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion-channel-mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel-length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non-Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long-overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high-performance nanofluidic energy devices.
Summary of main observation and conclusion
Osmotic power generated by mixing ionic solutions of different concentration is an underutilized clean energy resource that satisfy potentially the ever‐growing energy demand. For decades, substantial efforts are made to enhance the power density. Toward this goal, we once developed a heterogeneous nanoporous membrane comprising of heterojunctions between negatively charged mesoporous carbon and positively charged macroporous alumina to harvest electric power from salinity difference and achieved outstanding performance (J. Am. Chem. Soc. 2014, 136, 12265). The heterogeneous nanopore junction effectively suppresses ion concentration polarization (ICP) at low concentration end, and consequently promotes the overall power density. However, to date, a systematic understanding of the role of the heterogeneous nanopore junction in osmotic energy conversion remains urgent and largely unexplored. Herein, we provide an in‐depth theoretical investigation on this issue with special emphasis on several influential factors, such as the ionic concentration, the surface charge density, and the geometry of heterogeneous part. To balance the suppression of ICP and maintenance of charge selectivity, we find that these influential factors in the heterogeneous part should be restricted to a specific range. These findings provide direct guidance for design and optimization of high‐performance nanofluidic power sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.