Furalaxyl is a chiral pesticide and widely used in modern agriculture as racemate mixture. The enantiomerization and enantioselecive bioaccumulation by a single dose of furalaxyl to Tenebrio molitor larvae under laboratory conditions were studied using a high-performance liquid chromatography tandem mass spectroscopy method based on a ChiralPAK IC column. Our results showed that a significant enantiomerization (interconversion between R-enantiomer and S-enantiomer) was observed in Tenebrio molitor larvae under R- or S-furalaxyl exposure. Though the two furalaxyl enantiomers exhibited low-capacity of bioaccumulation in Tenebrio molitor larvae, bioaccumulation of rac-furalaxyl was enantioselective with a preferential accumulation of S-furalaxyl at 10mg/kg dosage exposure. In addition, enantiomerization and enantioselective degradation of the two enantiomers was not observed in wheat bran. These results showed that enantioselectivtiy of furalaxyl enantiomers was an important process combined with degradation, metabolism and enatiomerization in organisms.
Myclobutanil (MT), a chiral fungicide, can be metabolized enantioselectively in organisms. In this work, the associated absorption, distribution, metabolism and transcriptional responses of MT in rats were determined following a single-dose (10 mg·kg body weight) exposure to rac-, (+)- or (-)-MT. The enantiomer fractions (EFs) were less than 0.5 with time in the liver, kidney, heart, lung, and testis, suggesting preferential enrichment of (-)-MT in these tissues. Furthermore, there was conversion of (+)-form to (-)-form in the liver and kidney after 6 h exposure to enantiopure (+)-MT. Enrichment and degradation of the two enantiomers differed between rac-MT and MT-enantiomers groups, suggesting that MT bioaccumulation is enantiomer-specific. Interestingly, the degradation half-life of MT in the liver with rac-MT treatment was shorter than that with both MT-enantiomer treatments. One reason may be that the gene expression levels of cytochrome P450 1a2 ( cyp1a2) and cyp3a2 genes in livers treated with rac-MT were the highest among the three exposure groups. In addition, a positive correlation between the expression of cyp2e1 and cyp3a2 genes and rac-MT concentration was found in livers exposed to rac-MT. Simultaneously, five chiral metabolites were detected, and the enantiomers of three metabolites, RH-9090, RH-9089, and M2, were separated. The detected enantiomers of (+)-MT metabolites were in complete contrast with those of (-)-MT metabolites. According to the results, a metabolic pathway of MT in male rats was proposed, which included the following five metabolites: RH-9089, RH-9090, RH-9090 Sulfate, M1, and M2. The possible metabolic enzymes were marked in the pathway. The findings of this study provide more specific insights into the enantioselective metabolic mechanism of chiral triazole fungicides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.