Genome-scale metabolic models (GEMs) represent extensive knowledgebases that provide a platform for model simulations and integrative analysis of omics data. This study introduces Yeast8 and an associated ecosystem of models that represent a comprehensive computational resource for performing simulations of the metabolism of Saccharomyces cerevisiae––an important model organism and widely used cell-factory. Yeast8 tracks community development with version control, setting a standard for how GEMs can be continuously updated in a simple and reproducible way. We use Yeast8 to develop the derived models panYeast8 and coreYeast8, which in turn enable the reconstruction of GEMs for 1,011 different yeast strains. Through integration with enzyme constraints (ecYeast8) and protein 3D structures (proYeast8DB), Yeast8 further facilitates the exploration of yeast metabolism at a multi-scale level, enabling prediction of how single nucleotide variations translate to phenotypic traits.
Enzyme turnover numbers (kcat) are key to understanding cellular metabolism, proteome allocation and physiological diversity, but experimentally measured kcat data are sparse and noisy. Here we provide a deep learning approach (DLKcat) for high-throughput kcat prediction for metabolic enzymes from any organism merely from substrate structures and protein sequences. DLKcat can capture kcat changes for mutated enzymes and identify amino acid residues with a strong impact on kcat values. We applied this approach to predict genome-scale kcat values for more than 300 yeast species. Additionally, we designed a Bayesian pipeline to parameterize enzyme-constrained genome-scale metabolic models from predicted kcat values. The resulting models outperformed the corresponding original enzyme-constrained genome-scale metabolic models from previous pipelines in predicting phenotypes and proteomes, and enabled us to explain phenotypic differences. DLKcat and the enzyme-constrained genome-scale metabolic model construction pipeline are valuable tools to uncover global trends of enzyme kinetics and physiological diversity, and to further elucidate cellular metabolism on a large scale.
Superoleophobic/superhydrophilic surfaces have incomparable advantages for oil-water separation and oil droplet manipulation; however, such surfaces are difficult to obtain on the basis of surface tension theory, and existing attempts are either not fully functional or are nondurable. Here, a solution to achieve the combination of superoleophobicity and superhydrophilicity by emphasizing the polar component of surface tension is proposed. The developed surfaces can be flexibly applied to almost any solid substrate and exhibit superoleophobic and instantaneous superhydrophilic property. The surfaces applied to certain substrates can be used for controllable oil transport, oil-water separation, and emulsion demulsification. Furthermore, a novel ferroconcrete-like structure to substantially increase the durability of the developed surfaces without affecting the superwettability is developed. The coated steel meshes preserve the ability of the material to separate oilwater mixtures even after over 400 m abrasion, which can be a significant step toward its widespread application.
Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome-scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence-level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.