This research presents the experimentally measured displacement and strain at specified locations of the concrete of tested annular reinforced concrete slabs subjected to lateral load with three different ratios of inner to outer radii and simply supported at the outer circumference. Performed 3D model of annular RC slabs under the axisymmetric ring load applied, as close as at the inner edge, and investigated their stress-strain state in the elastic stage. This study contains different approaches based on classical thin-plate (CTP) theory and performed a 3D finiteelement (FE) model to predict the fields of radial and circumferential stresses and deflection of the slab. Experimentally investigated the crack widths and crack pattern of the two groups of slabs-group A-radially reinforced and group M-orthogonally reinforced. added a correction factor to the CTP equations, which used to determine both radial and circumferential stresses. Also, investigated the appearance of the first cracks, deflection, failure
This study aimed to investigate the stress-strain and strain energy density (SED) states of Dalal stone arch bridge in Mesopotamia. Structural modeling of ancient bridge made of natural stone has been proven reliable, and accurate results have been obtained using 3D finite elements. Based on the more applicable theories of failure, a general methodology is presented for evaluating the ringstone of the largest ellipse-shaped arch of the Dalal Bridge. The elliptical arch was built in the COMSOL Multiphysics complex using 70 3D elements to represent the number of stones used along the length of the arch in the Dalal Bridge. Therefore, to create an accurate model, the coordinates of the four nodes of each stone were entered. Then, all domains were extruded for 0.8 m in the y-axis direction, i.e., 0.8 m of the bridge width was selected for investigation. That is, tapered fields were used to represent the stones of the arch ring. Using Rankine’s, St. Venant’s, and Haigh’s theories, the qualitative and quantitative characteristics of all components of the stresses and SED states are investigated. The maximum positive values of the principal stresses, σ1, σ2, and σ3, in the 3D model reach 1.4, 0.51, and 0.09 MPa, respectively, and their maximum negative values were 13, 6.8, and 3.4 MPa, respectively. The equivalent principal stresses determined via a 2D investigation did not exceed these values. Evaluating the ringstone against the maximum principal strain theory (i.e., St. Venant’s theory) reveals a safety factor of four in the existing state. Also, application of Haigh’s theory confirms the results of the previously applied approaches. Even though the safety of the arch, according to the total strain energy theory (i.e., Haigh’s approach), has been verified, a significant variation in the nonuniformity of the distribution of the SED (0.0011 J/m3–4416 J/m3) confirmed that the geometry of the investigated arch is not optimal for applied loading. The maximum value of the vertical component of the displacement is 3.4 mm, significantly lower than the allowable deflection for such an arch span.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.