The objective of this study was to investigate the effects of explosion puffing on the nutritional composition, physical properties, and digestibility of grains including millet, barley, black rice, rice, glutinous rice, and wheat. Explosion puffing of grains resulted in the nutritional composition with higher total sugar content and lower moisture, starch and fat contents. Although the protein content scarcely changed comparing with the untreated grains, the solubility declined significantly. Moreover, explosion puffing could significantly improve the physical properties including the water absorption index, water solubility index and gelatinization degree. The in vitro digestion experiment was employed to investigate the influences of explosion puffing on the starch hydrolysis rate and free amino acid content, and it was indicated that the digestibility of the starch and protein in grains was highly improved. The results demonstrated that explosion puffing is a suitable technique to improve the physical properties and digestibility of grains, which provided the theoretic foundation for the use of explosion puffing technology in coarse cereal processing.
Drug-resistant bacterial infections and lack of available antibacterial agents in clinical practice are becoming serious risks to public health. We synthesized a new class of haloemodins by modifying a traditional Chinese medicine component, emodin. The novel haloemodin exerts strong inhibitory activity on bacterial topoisomerase I and DNA gyrase, and not on the topoisomerases of human origin. In principle, it shows remarkable antibacterial activities against laboratory and clinically isolated Gram-positive bacteria, including vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus. We further expanded its antibacterial spectrum into against Gram-negative bacteria with the assistance of polymyxin B nonapeptide, which helps haloemodin to penetrate through the bacterial outer membrane. Finally, the therapeutic effect of haloemodin in vivo was confirmed in curing S. aureus-induced keratitis on rabbit model. With distinctive structural difference from the antibiotics we used, the haloemodins are of value as promising antibacterial pharmacophore, especially for combat the infections caused by drug-resistant pathogens.
The rise in infections caused by drug-resistant pathogens and a lack of effective medicines requires the discovery of new antibacterial agents. Naturally chlorinated emodin 1,3,8-trihydroxy-4-chloro-6-methyl-anthraquinone (CE) from fungi and lichens was found to markedly inhibit the growth of Gram-positive bacteria, especially common drug-resistant bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). CE was confirmed to cause significant potassium leakage, cell membrane depolarization and damage to the selective permeability of cell membranes in bacterial cells, resulting in bacterial cell death. In addition, CE was shown to have a strong electrostatic interaction with bacterial DNA and induce DNA condensation. Thus, CE is a promising natural antibacterial pharmacophore against Gram-positive bacteria, especially common drug-resistant MRSA and VRE isolates, with a dual antibacterial mechanism that damages bacterial cell membranes and DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.