Substance P (SP) regulates multiple biological processes through its high-affinity neurokinin-1 receptor (NK-1R). While the SP/NK-1R signaling axis is involved in the pathogenesis of solid cancer, the role of this signaling pathway in hematological malignancy remains unknown. Here, we demonstrate that NK-1R expression is markedly elevated in the white blood cells from acute myeloid leukemia patients and a panel of human leukemia cell lines. Blocking NK-1R induces apoptosis in vitro and in vivo via increase of mitochondrial reactive oxygen species. This oxidative stress was triggered by rapid calcium flux from the endoplasmic reticulum into mitochondria and, consequently, impairment of mitochondrial function, a mechanism underlying the cytotoxicity of NK-1R antagonists. Besides anticancer activity, blocking NK-1R produces a potent antinociceptive effect in myeloid leukemia-induced bone pain by alleviating inflammation and inducing apoptosis. These findings thus raise the exciting possibility that the NK-1R antagonists, drugs currently used in the clinic for preventing chemotherapy-induced nausea and vomiting, may provide a therapeutic option for treating human myeloid leukemia.
Acute myeloid leukemia (AML) is a complex malignancy characterized by the clonal expansion of immature myeloid precursors. The standard treatment for newly diagnosed AML is chemotherapy consisting of cytosine arabinoside (Ara-C) and anthracyclines with disappointing clinical outcomes and severe adverse effects, such as symptomatic bradycardia, neurotoxicity. Thus, it is promising to treat AML through combination drug therapy to reduce the adverse effects of chemotherapeutics. In our recent published PNAS paper, we reported that NK-1R antagonists, both Aprepitant and SR140333, induce apoptosis of myeloid leukemia cells by inducing oxidative stress through mitochondrial calcium overload. We, therefore, tested the hypothesis of the combination Ara-C with NK-1R antagonist could enhance the efficacy of Ara-C. Methods: MTT assay was employed to detect the cell proliferation. Flow cytometry was applied to detect the cell cycle and necrosis. PI uptake and LDH release assay were used to detect the disintegration of the plasma membrane. Xenograft model was constructed to explore the effect of combination Ara-C with Aprepitant in vivo. Results: Our results showed that Aprepitant sensitizes HL60 cells to the cytotoxic effects of Ara-C more than 5-fold by enhancing G0/G1 cell cycle arrest and necrosis in vitro. Furthermore, Nec-1, a specific inhibitor of necroptosis, could recover the cell proliferative viability significantly. Attractively, once every 2-days regimen of Ara-C (5 mg/kg) and Aprepitant (10 mg/kg) via in situ injection dramatically reduced the tumor volume from 2175.0 ± 341.9 mm 3 in the vehicle group to 828.4 ± 232.4 mm 3 in the combination group without obvious toxicity in human myeloid leukemia xenograft mice. Conclusion: Taken together, reduced dose of Ara-C combination with moderate Aprepitant provides more effective therapeutical methods for AML treatment in vitro and in vivo with the elimination of the toxicity of Ara-C, which may pay new avenue for the usage of the routine chemotherapy drug Ara-C with low dose to enhance efficacy and reduce toxicity in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.