Drug nanocrystals (NCs) appear to be favorable to improving oral bioavailability of poorly water-soluble drugs as evidenced by the great success they have had in the market. However, the pathway and mechanism of drug NCs through epithelial membrane are still unclear. In an attempt to clarify their transport features, paclitaxel nanocrystals (PTX-NCs), and paclitaxel hybrid NCs with lipophilic carbocyanine dyes, were prepared and characterized as the models. The endocytosis, intracellular trafficking, paracellular transport, and transcytosis of PTX-NCs were carefully investigated with Förster resonance energy transfer (FRET) analysis, as well as a colocalization assay, flow cytometry, gene silencing, Western-blot, transepithelial electrical resistance (TEER) study and other approaches on MDCK cells. It was found that rod-like PTX-NCs could transport through the monolayer intact, and the process of endocytosis proved to be time and energy dependent. Endoplasmic reticulum (ER) and Golgi complexes were colocalized with PTX-NCs in cells, so the ER-Golgi complexes/Golgi complexes-basolateral membrane pathway may be involved in the intracellular trafficking and transcytosis of PTX-NCs. It was demonstrated here that cav-1, dynamin, and actin filament modulated the endocytosis process, and Cdc 42 regulated the transcytosis process. In addition, no paracellular transport of PTX-NCs was observed. These findings demonstrated that the rod-like nanocrystals not only enhanced the transcytosis of PTX compared with microparticles of raw drug materials but also changed the pathways of drug delivery. This study certainly provides insight for the oral absorption mechanism of nanocrystals of poorly soluble drugs.
Embryonic tendon cells have been studied in vitro to better understand mechanisms of tendon development. Outcomes of in vitro cell culture studies are easily affected by phenotype instability of embryonic tendon cells during expansion in vitro to achieve desired cell numbers, yet this has not been characterized. In the present study, we characterized phenotype stability, expansion potential, and onset of senescence in chick embryo tendon cells from low to high cell doublings. We focused on cells of Hamburger‐Hamilton stages (HH) 40 and HH42, where HH40 is the earliest stage associated with substantial increases in extracellular matrix and mechanical properties during embryonic tendon development. HH40 and HH42 cells both downregulated expression levels of tendon phenotype markers, scleraxis and tenomodulin, and exhibited onset of senescence, based on p16 and p21 expression levels, cell surface area, and percentage of β‐galactosidase positive cells, before significant decreases in proliferation rates were detected. These findings showed that embryonic tendon cells destabilize phenotype and become senescent earlier than they begin to decline in proliferation rates in vitro. Additionally, embryonic stage of isolation appears to have no effect on proliferation rates, whereas later stage HH42 cells downregulate phenotype and become susceptible to senescence sooner than earlier stage HH40 cells. Based on our data, we recommend chick embryo tendon cells be used before a maximum cumulative doubling level of 12 (passage 4 in this study) to avoid phenotype destabilization and onset of senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.